This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053600 #37 Nov 06 2024 15:26:46 %S A053600 2,727,37273,333727333,93337273339,309333727333903, %T A053600 1830933372733390381,92183093337273339038129, %U A053600 3921830933372733390381293,1333921830933372733390381293331,18133392183093337273339038129333181 %N A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring. %D A053600 G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000. %H A053600 Clark Kimberling, <a href="/A053600/b053600.txt">Table of n, a(n) for n = 1..200</a> %H A053600 P. De Geest, <a href="https://www.worldofnumbers.com/palprim3.htm">Palindromic Prime Pyramid Puzzle by G.L.Honaker,Jr</a> %H A053600 G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/1143.html">Prime Curios! 18133...33181 (35-digits)</a> %H A053600 G. L. Honaker, Jr. & C. K. Caldwell, <a href="http://www.utm.edu/staff/caldwell/preprints/JRM_prime_pyramids.pdf">Palindromic Prime Pyramids</a> %H A053600 G. L. Honaker, Jr. & C. K. Caldwell, <a href="http://www.utm.edu/staff/caldwell/supplements">Supplement to "Palindromic Prime Pyramids"</a> %H A053600 Ivars Peterson, <a href="https://www.sciencenews.org/article/primes-palindromes-and-pyramids">Primes, Palindromes, and Pyramids</a>, Science News. %H A053600 Inder J. Taneja, <a href="https://www.researchgate.net/profile/Inder_Taneja/publication/319151146_Palindromic_Prime_Embedded_Trees/links/5994fddb458515c0ce653c73/Palindromic-Prime-Embedded-Trees.pdf">Palindromic Prime Embedded Trees</a>, RGMIA Res. Rep. Coll. 20 (2017), Art. 124. %H A053600 Inder J. Taneja, <a href="https://rgmia.org/papers/v21/v21a75.pdf">Same Digits Embedded Palprimes</a>, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47. %e A053600 As a triangle: %e A053600 .........2 %e A053600 ........727 %e A053600 .......37273 %e A053600 .....333727333 %e A053600 ....93337273339 %e A053600 ..309333727333903 %e A053600 1830933372733390381 %t A053600 d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* _Jayanta Basu_, Jun 24 2013 *) %o A053600 (Python) %o A053600 from gmpy2 import digits, mpz, is_prime %o A053600 A053600_list, p = [2], 2 %o A053600 for _ in range(30): %o A053600 m, ps = 1, digits(p) %o A053600 s = mpz('1'+ps+'1') %o A053600 while not is_prime(s): %o A053600 m += 1 %o A053600 ms = digits(m) %o A053600 s = mpz(ms+ps+ms[::-1]) %o A053600 p = s %o A053600 A053600_list.append(int(p)) # _Chai Wah Wu_, Apr 09 2015 %Y A053600 Cf. A000040, A002385, A047076, A052205, A034276, A256957, A052091, A052092, A261881. %K A053600 base,nonn %O A053600 1,1 %A A053600 _G. L. Honaker, Jr._, Jan 20 2000