A053617 Number of permutations of length n which avoid the patterns 1234 and 1324.
1, 1, 2, 6, 22, 90, 396, 1837, 8864, 44074, 224352, 1163724, 6129840, 32703074, 176351644, 959658200, 5262988330, 29057961666, 161374413196, 900792925199, 5050924332096, 28434661250454, 160644331001476, 910455895039056, 5174722258676440, 29486753617569684
Offset: 0
Keywords
Links
- Andrew Baxter and Jay Pantone, Table of n, a(n) for n = 0..600 (terms n=1..100 from Andrew Baxter)
- Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, Generating Permutations with Restricted Containers, arXiv:1510.00269 [math.CO], 2015.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Kremer, Darla and Shiu, Wai Chee, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
- D. Zeilberger, Enumeration schemes and more importantly their automatic generation, Annals of Combinatorics 2 (1998) 185-195. The link is to an overview on Doron Zeilberger's home page; there is a local copy here [Pdf file only, no active links]
Extensions
More terms from Andrew Baxter, May 20 2011
Comments