cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053619 a(n) = round(n/(log(n)-1) - pi(n)).

This page as a plain text file.
%I A053619 #10 Jul 02 2025 16:01:59
%S A053619 -1,-8,28,8,5,5,3,3,4,4,3,3,2,3,3,3,2,3,2,2,2,3,2,2,2,3,3,3,2,2,2,2,2,
%T A053619 2,3,3,2,2,3,3,2,2,2,2,2,2,1,2,2,2,2,3,2,2,2,3,3,3,2,2,2,2,2,2,2,3,2,
%U A053619 2,2,3,2,2,1,1,2,2,2,2,1,2,2,2,1,1,2,2,2,2,2,2,2,2,2,3,3,3,2,2,3,3,2,2,1
%N A053619 a(n) = round(n/(log(n)-1) - pi(n)).
%H A053619 G. C. Greubel, <a href="/A053619/b053619.txt">Table of n, a(n) for n = 1..10000</a>
%H A053619 C. K. Caldwell, <a href="http://www.utm.edu/research/primes/howmany.shtml">How Many Primes Are There?</a>
%t A053619 Table[Round[n/(Log[n] -1) -PrimePi[n]], {n, 1, 110}] (* _G. C. Greubel_, May 16 2019 *)
%o A053619 (PARI) {a(n) = round(n/(log(n)-1) - primepi(n))}; \\ _G. C. Greubel_, May 16 2019
%o A053619 (Magma) [Round(n/(Log(n)-1) - #PrimesUpTo(n)): n in [1..110]]; // _G. C. Greubel_, May 16 2019
%o A053619 (Sage) [round(n/(log(n)-1) - prime_pi(n)) for n in (1..110)] # _G. C. Greubel_, May 16 2019
%Y A053619 Cf. A000720, A052434, A052435.
%K A053619 sign
%O A053619 1,2
%A A053619 _Henry Bottomley_, Mar 21 2000
%E A053619 More terms from _James Sellers_, Mar 23 2000