This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053622 #12 Sep 08 2022 08:45:00 %S A053622 2,1,1,0,0,0,0,0,0,0,0,-1,-1,0,0,-1,-1,-2,-1,-1,-1,-2,-1,-1,-1,-1,-1, %T A053622 -1,-1,-2,-2,-2,-1,-1,-1,-2,-2,-1,-1,-2,-2,-3,-2,-2,-2,-3,-3,-2,-2,-2, %U A053622 -2,-3,-2,-2,-2,-2,-2,-3,-2,-3,-3,-3,-3,-2,-2,-3,-3,-3,-3,-3,-3 %N A053622 a(n) = round( n/log(n) - pi(n) ). %H A053622 G. C. Greubel, <a href="/A053622/b053622.txt">Table of n, a(n) for n = 2..1000</a> %H A053622 C. K. Caldwell, <a href="http://www.utm.edu/research/primes/howmany.shtml">How Many Primes Are There?</a> %F A053622 a(n) = A050499(n) - A000720(n). %t A053622 Table[Round[n/Log[n] - PrimePi[n]], {n,2,80}] (* _G. C. Greubel_, Apr 20 2017 *) %o A053622 (PARI) vector(80, n, n++; round(n/log(n) - primepi(n)) ) \\ _G. C. Greubel_, May 17 2019 %o A053622 (Magma) [Round(n/Log(n) - #PrimesUpTo(n)): n in [2..80]]; // _G. C. Greubel_, May 17 2019 %o A053622 (Sage) [round(n/log(n) - prime_pi(n)) for n in (2..80)] # _G. C. Greubel_, May 17 2019 %Y A053622 Cf. A000720, A050499, A052434, A052435. %K A053622 sign %O A053622 2,1 %A A053622 _Henry Bottomley_, Mar 21 2000