This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053650 #38 Dec 15 2023 06:19:07 %S A053650 0,2,3,8,5,24,7,32,27,60,11,96,13,112,105,128,17,216,19,240,189,264, %T A053650 23,384,125,364,243,448,29,660,31,512,429,612,385,864,37,760,585,960, %U A053650 41,1260,43,1056,945,1104,47,1536,343,1500,969,1456,53,1944,825,1792,1197 %N A053650 Cototient function of n^2. %C A053650 Seems to be invertible like n*Phi(n). Compare with A002618, A038040. %H A053650 Reinhard Zumkeller, <a href="/A053650/b053650.txt">Table of n, a(n) for n = 1..10000</a> %F A053650 a(n) = n*(n - phi(n)) = n^2 - n*phi(n) = Cototient(n^2) = A051953(A000290(n)). %F A053650 a(n) = n^2 - A002618(n). %F A053650 For p prime, Cototient(p)=1 and a(p)=p. %F A053650 a(n) = n*cototient(n) = n*A051953(n). - _Omar E. Pol_, Nov 22 2012 %F A053650 Dirichlet g.f.: zeta(s-2)*(1 - 1/zeta(s-1)). - _Ilya Gutkovskiy_, Jul 26 2016 %F A053650 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - 6/Pi^2 (A229099). - _Amiram Eldar_, Dec 15 2023 %t A053650 Table[n(n-EulerPhi[n]), {n, 60}] (* _Michael De Vlieger_, Jul 26 2016 *) %o A053650 (PARI) a(n) = n^2 - eulerphi(n^2) \\ _Michel Marcus_, Jul 27 2013 %o A053650 (Haskell) %o A053650 a053650 = a051953 . a000290 -- _Reinhard Zumkeller_, Jan 21 2014 %o A053650 (Magma) [n*(n-EulerPhi(n)): n in [1..60]]; // _Vincenzo Librandi_, Jul 27 2016 %o A053650 (Sage) [n*(n - euler_phi(n)) for n in (1..60)] # _G. C. Greubel_, May 18 2019 %o A053650 (GAP) List([1..60], n-> n*(n- Phi(n)) ); # _G. C. Greubel_, May 18 2019 %Y A053650 Cf. A000005, A038040. %Y A053650 Cf. A001248, A002618, A053650, A053192, A053193, A036689, A229099. %K A053650 nonn,look,easy %O A053650 1,2 %A A053650 _Labos Elemer_, Feb 18 2000