This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053656 #59 Aug 25 2024 08:31:28 %S A053656 1,2,2,4,4,9,10,22,30,62,94,192,316,623,1096,2122,3856,7429,13798, %T A053656 26500,49940,95885,182362,350650,671092,1292762,2485534,4797886, %U A053656 9256396,17904476,34636834,67126282,130150588,252679832,490853416 %N A053656 Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group). %C A053656 Also number of bracelets (or necklaces) with n red or blue beads such that the beads switch colors when bracelet is turned over. %C A053656 a(n) is also the number of frieze patterns generated by filling a 1 X n block with n copies of an asymmetric motif (where the copies are chosen from original motif or a 180-degree rotated copy) and then repeating the block by translation to produce an infinite frieze pattern. (Pisanski et al.) %C A053656 a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle. (Boldi et al.) - _Sebastiano Vigna_, Jan 08 2018 %D A053656 Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants. %H A053656 Seiichi Manyama, <a href="/A053656/b053656.txt">Table of n, a(n) for n = 1..3334</a> %H A053656 Rémi Cocou Avohou, Joseph Ben Geloun, and Reiko Toriumi, <a href="https://doi.org/10.1140/epjc/s10052-024-13091-z">Counting U(N)^{⊗r} ⊗ O(N)^{⊗q} invariants and tensor model observables</a>, Eur. Phys. J. C 84, 839 (2024), see pp. 11, 27; <a href="https://arxiv.org/abs/2404.16404">Preprint arXiv:2404.16404</a> [hep-th], 2024. See pp. 18, 49. %H A053656 Paolo Boldi and Sebastiano Vigna, <a href="https://doi.org/10.1016/S0012-365X(00)00455-6">Fibrations of Graphs</a>, Discrete Math., 243 (2002), 21-66. %H A053656 Shinsaku Fujita, <a href="https://doi.org/10.1246/bcsj.20160369">alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method</a>, Bull. Chem. Soc. Jpn. 2017, 90, 343-366. See Table 8. %H A053656 T. Pisanski, D. Schattschneider, and B. Servatius, <a href="http://www.jstor.org/stable/27642932">Applying Burnside's lemma to a one-dimensional Escher problem</a>, Math. Mag., 79 (2006), 167-180. %H A053656 Jeb F. Willenbring, <a href="https://uwm.edu/math/people/willenbring-jeb/">Home page</a>. %H A053656 A. Yajima, <a href="https://doi.org/10.1246/bcsj.20140204">How to calculate the number of stereoisomers of inositol-homologs</a>, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264. See Tables 1 and 2 (and text). %H A053656 <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a>. %F A053656 G.f.: x/(1-x) + x^2/(2*(1-2*x^2)) + Sum_{n >= 1} (x^(2*n)/(2*n)) * Sum_{ d divides n } phi(d)/(1-x^d)^(2*n/d), or x^2/(2*(1-2*x^2)) - Sum_{n >= 1} phi(n)*log(1-2*x^n)/(2*n). [corrected and extended by _Andrey Zabolotskiy_, Oct 17 2017] %F A053656 a(n) = A000031(n)/2 + (if n even) 2^(n/2-2). %e A053656 2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->). %p A053656 v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end; %p A053656 h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi; %p A053656 A053656:=n->(v(n)+h(n))/(2*n); # _N. J. A. Sloane_, Nov 11 2006 %t A053656 a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* _Jean-François Alcover_, Nov 21 2011 *) %o A053656 (PARI) a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ _Andrew Howroyd_, Jun 16 2021 %Y A053656 The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848. %K A053656 nonn,easy,nice %O A053656 1,2 %A A053656 Jeb F. Willenbring (jwillenb(AT)ucsd.edu), Feb 14 2000 %E A053656 More terms and additional comments from _Christian G. Bower_, Dec 13 2001