cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053705 Primes p of form q^k-2 where q is also a prime and k > 1.

This page as a plain text file.
%I A053705 #35 Aug 27 2024 09:15:34
%S A053705 2,7,23,47,79,167,241,359,727,839,1367,1847,2207,2399,3719,5039,6857,
%T A053705 7919,10607,11447,14639,16127,17159,19319,19681,28559,29789,29927,
%U A053705 36479,44519,49727,50651,54287,57119,66047,85847,97967,113567,128879
%N A053705 Primes p of form q^k-2 where q is also a prime and k > 1.
%H A053705 Amiram Eldar, <a href="/A053705/b053705.txt">Table of n, a(n) for n = 1..10000</a>
%F A053705 a(n) = A053704(n) - 2. - _Amiram Eldar_, Aug 27 2024
%e A053705 79 = 3^4-2.
%e A053705 241 = 3^5-2.
%t A053705 Do[s=2+Prime[n]; If[Equal[Length[FactorInteger[s]], 1]&&!PrimeQ[s], Print[s-2]], {n, 1, 100000}]
%t A053705 fQ[n_] := PrimeNu[n + 2] == 1 && ! PrimeQ[n + 2]; Select[ Prime@ Range@ 15000, fQ] (* _Robert G. Wilson v_, Apr 01 2012 *)
%t A053705 seq[max_] := Module[{s = {}, p = 2}, While[p^2 <= max, s = Join[s, Select[p^Range[2, Floor[Log[p, max]]], PrimeQ[# - 2] &]]; p = NextPrime[p]]; Union[s] - 2]; seq[150000] (* _Amiram Eldar_, Aug 27 2024 *)
%o A053705 (PARI) lista(nn) = forprime (p=1, nn, if (ispower(p+2,,&q) && isprime(q), print1(p, ", ")); ); \\ _Michel Marcus_, Dec 11 2014
%Y A053705 Cf. A025475, A053704.
%Y A053705 Subsequence of A267944.
%K A053705 nonn
%O A053705 1,1
%A A053705 _Labos Elemer_, Feb 14 2000
%E A053705 Definition corrected by _Zak Seidov_, Dec 11 2014