This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053733 #20 Feb 26 2025 11:10:27 %S A053733 0,0,0,0,0,0,0,0,1,1,5,19,55,143,334,715,1430,2702,4862,8398,13997, %T A053733 22610,35530,54480,81719,120175,173587,246675,345345,476905,650325, %U A053733 876525,1168700,1542684,2017356,2615092,3362260,4289780,5433722 %N A053733 a(n) = ceiling(binomial(n,9)/n). %H A053733 G. C. Greubel, <a href="/A053733/b053733.txt">Table of n, a(n) for n = 1..1000</a> %H A053733 R. L. Graham and N. J. A. Sloane, <a href="http://dx.doi.org/10.1109/TIT.1980.1056141">Lower bounds for constant weight codes</a>, IEEE Trans. Inform. Theory, 26 (1980), 37-43. %H A053733 <a href="/index/Rec#order_35">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-8,28,-56,70,-56,28,-8,1). %p A053733 seq(ceil(binomial(n,9)/n), n=1..40); # _G. C. Greubel_, Sep 06 2019 %t A053733 Table[Ceiling[Binomial[n, 9]/n], {n, 40}] (* _G. C. Greubel_, Sep 06 2019 *) %o A053733 (PARI) vector(40, n, ceil(binomial(n,9)/n)) \\ _G. C. Greubel_, Sep 06 2019 %o A053733 (Magma) [Ceiling(Binomial(n,9)/n): n in [1..40]]; // _G. C. Greubel_, Sep 06 2019 %o A053733 (Sage) [ceil(binomial(n,9)/n) for n in (1..40)] # _G. C. Greubel_, Sep 06 2019 %Y A053733 Cf. Sequences of the form ceiling(binomial(n,k)/n): A000012 (k=1), A004526 (k=2), A007997 (k=3), A008646 (k=5), A032192 (k=7), A053618 (k=4), A053643 (k=6), A053731 (k=8), this sequence (k=9). %K A053733 nonn %O A053733 1,11 %A A053733 _N. J. A. Sloane_, Mar 25 2000