A053734 A000016-A000048 (when they are lined up so that the two 16's match).
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 6, 1, 2, 11, 1, 1, 16, 4, 1, 30, 2, 1, 57, 1, 0, 95, 1, 13, 172, 1, 1, 317, 16, 1, 591, 1, 2, 1124, 1, 1, 2048, 10, 52, 3857, 2, 1, 7286, 97, 16, 13799, 1, 1, 26386, 1, 1, 49968, 0, 319, 95331, 1, 2, 182363
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Yan Bo Ti, Gabriel Verret, and Lukas Zobernig, Abelian Varieties with p-rank Zero, arXiv:2203.08401 [math.NT], 2022.
Programs
-
Maple
f := proc(n) local d,sum1; sum1 := 0; for d from 1 to n do if d mod 2 = 1 and n mod d = 0 then sum1 := sum1+(phi(d)-mobius(d))*2^(n/d); fi; od; sum1/(2*n); end;
-
Mathematica
Table[DivisorSum[n, Mod[#, 2] EulerPhi[#]*2^(n/#)/(2 n) &] - DivisorSum[n, Total[MoebiusMu[#]*2^(n/#)]/(2 n) &, OddQ], {n, 69}] (* Michael De Vlieger, Mar 26 2022 *)