cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053778 First of four consecutive primes that comprise two sets of twin primes.

This page as a plain text file.
%I A053778 #23 Feb 16 2025 08:32:42
%S A053778 5,11,101,137,179,191,419,809,821,1019,1049,1481,1871,1931,2081,2111,
%T A053778 2969,3251,3359,3371,3461,4217,4229,4259,5009,5651,5867,6689,6761,
%U A053778 6779,6947,7331,7547,8219,8969,9419,9431,9437,10007,11057,11159,11699,12239
%N A053778 First of four consecutive primes that comprise two sets of twin primes.
%C A053778 These twins are not necessarily at the minimal distance as in A007530 (which is a subsequence).
%H A053778 M. F. Hasler, <a href="/A053778/b053778.txt">Table of n, a(n) for n = 1..5274</a>.
%H A053778 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeQuadruplet.html">Prime Quadruplet</a>
%F A053778 A001359 primes for which A048614 is zero. Lesser of 2-twin primes after which the consecutive prime difference pattern (of A001223) is [2, 6k-2, 2] for some k.
%e A053778 These primes initiate consecutive p quadruples as follows: [p,p+2,p+6k,p+6k+2]. For 6k=6,12,18,24,30,36,54 such a p =5,137,1931,9437,2968, 20441 and 48677 resp. Such a quadruple is [48677,48679,48731,48733], with [2,52,2] difference pattern.
%t A053778 Transpose[Select[Partition[Prime[Range[1500]],4,1],#[[4]]-#[[3]]== #[[2]]-#[[1]]== 2&]][[1]] (* _Harvey P. Dale_, Jul 07 2011 *)
%o A053778 (PARI) forprime( p=1,10^5, isprime(p+2) || next; isprime(nextprime(p+4)+2) && print1(p","))
%o A053778 (PARI) nextA053778(p)=until( isprime(nextprime(p+1)+2), until( p+2==p=nextprime(p+1),)); p-2
%o A053778 (PARI) p=0; A053778=vector(100,i, p=nextA053778(p+1))
%Y A053778 Cf. A001223, A001359, A007530, A048614.
%K A053778 nonn
%O A053778 1,1
%A A053778 _Labos Elemer_, Mar 24 2000
%E A053778 Edited by _N. J. A. Sloane_, Apr 13 2008, at the suggestion of M. F. Hasler.