A053790 Composite numbers arising as sum of first k primes.
10, 28, 58, 77, 100, 129, 160, 238, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888, 5117, 5350, 5589, 5830
Offset: 1
Examples
a(4) = 77 because 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77 = A007504(8) is composite, and 77 is the 4th such composite sum of k primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # to use primes <= N P:= select(isprime,[2,seq(i,i=3..N,2)]): remove(isprime,ListTools:-PartialSums(P)); # Robert Israel, Sep 22 2016
-
Mathematica
Cases[Accumulate[Prime[Range[100]]],Except[?PrimeQ]] (*_Fred Patrick Doty Aug 22 2017*)
-
PARI
first(n)=my(v=vector(n),s,i); forprime(p=2,, if(isprime(s+=p), next); v[i++]=s; if(i==n, break)); v \\ Charles R Greathouse IV, Aug 23 2017
-
Python
from sympy import isprime, nextprime def aupto(limit): alst, s, p = [], 2, 2 while s < limit: if not isprime(s): alst.append(s) p = nextprime(p) s += p return alst print(aupto(6000)) # Michael S. Branicky, Oct 28 2021
Comments