This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053795 #55 Jul 02 2025 16:01:59 %S A053795 9,21,27,33,39,49,51,57,63,69,77,81,87,91,93,99,111,117,119,121,123, %T A053795 129,133,141,143,147,153,159,161,169,171,177,183,187,189,201,203,207, %U A053795 209,213,217,219,221,231,237,243,247,249,253,259,261,267,273,279,287 %N A053795 Composite numbers ending in 1, 3, 7 or 9. %C A053795 Composite numbers not divisible by 2 or 5. - _Lekraj Beedassy_, Jul 05 2004 %C A053795 Composite numbers ending in 1, 3, 7 or 9 are values (some shared within sets, because some values are numbers with multiple factors) of the following sets of binomial products: %C A053795 {(10x+3)*(10y+7), (10x+9)*(10y+9), (10x+11)*(10y+11)}, {(10x+3)*(10y+11), (10x+7)*(10y+9)}, %C A053795 {(10x+3)*(10y+9), (10x+7)*(10y+11)}, and %C A053795 {(10x+3)*(10y+3), (10x+7)*(10y+7), (10x+9)*(10y+11)}, with x, y integers >= 0. - _Marvin Y. Hubble_, Jul 12 2013 and May 12 2014 and Sep 27 2019 %H A053795 Robert Israel, <a href="/A053795/b053795.txt">Table of n, a(n) for n = 1..10000</a> %F A053795 a(n) = 2.5n + 2.5n/log n + O(n/log^2 n). - _Charles R Greathouse IV_, Jan 30 2018 %p A053795 remove(isprime, [seq(seq(10*i+j,j=[3,7,9,11]),i=0..100)]); # _Robert Israel_, Jan 29 2018 %t A053795 Select[Range[300],CompositeQ[#]&&OddQ[#]&&!Divisible[#,5]&] (* _Harvey P. Dale_, Jul 13 2014 *) %o A053795 (PARI) is(n)=gcd(n,10)==1 && !isprime(n) && n>1 \\ _Charles R Greathouse IV_, Jan 30 2018 %o A053795 (Python) %o A053795 from sympy import isprime %o A053795 def ok(n): return n > 1 and n%10 in {1, 3, 7, 9} and not isprime(n) %o A053795 print(list(filter(ok, range(2, 288)))) # _Michael S. Branicky_, Sep 21 2021 %Y A053795 Subsequence of A045572. %K A053795 nonn,base,easy %O A053795 1,1 %A A053795 _G. L. Honaker, Jr._, Apr 01 2000 %E A053795 More terms from _James Sellers_, Apr 08 2000 %E A053795 Offset corrected by _Arkadiusz Wesolowski_, Dec 18 2011