This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053797 #43 Jun 13 2024 14:57:35 %S A053797 1,2,1,1,1,1,2,2,1,1,1,2,3,1,1,1,1,2,1,1,2,2,1,1,1,1,1,3,1,1,1,2,2,3, %T A053797 1,1,2,1,1,2,1,2,1,1,1,1,2,2,2,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,4, %U A053797 1,1,1,1,2,1,1,1,1,2,2,1,2,1,1,2,1,1,1,1,1,2,1,2,1,2,1,1,1,3,1,3,1,2,2,2,1 %N A053797 Lengths of successive gaps between squarefree numbers. %C A053797 From _Gus Wiseman_, Jun 11 2024: (Start) %C A053797 Also the length of the n-th maximal run of nonsquarefree numbers. These runs begin: %C A053797 4 %C A053797 8 9 %C A053797 12 %C A053797 16 %C A053797 18 %C A053797 20 %C A053797 24 25 %C A053797 27 28 %C A053797 32 %C A053797 36 %C A053797 40 %C A053797 44 45 %C A053797 48 49 50 %C A053797 (End) %H A053797 Peter Kagey, <a href="/A053797/b053797.txt">Table of n, a(n) for n = 1..10000</a> %H A053797 M. Filaseta and O. Trifonov, <a href="http://dx.doi.org/10.1007/978-1-4612-3464-7_15">On Gaps between Squarefree Numbers</a>. In Analytic Number Theory, Vol 85, 1990, Birkhäuser, Basel, pp. 235-253. %H A053797 E. Fogels, <a href="http://dx.doi.org/10.1017/S0305004100017990">On the average values of arithmetic functions</a>, Proc. Cambridge Philos. Soc. 1941, 37: 358-372. %H A053797 L. Marmet, <a href="http://www.marmet.org/louis/sqfgap/">First occurrences of squarefree gaps...</a> %H A053797 L. Marmet, <a href="http://arxiv.org/abs/1210.3829">First occurrences of square-free gaps and an algorithm for their computation</a>, arXiv preprint arXiv:1210.3829 [math.NT], 2012. - From _N. J. A. Sloane_, Jan 01 2013 %H A053797 K. F. Roth, <a href="https://doi.org/10.1112/jlms/s1-26.4.263">On the gaps between squarefree numbers</a>, J. London Math. Soc. 1951 (2) 26:263-268. %H A053797 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A053797 The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree). %p A053797 SF:= select(numtheory:-issqrfree,[$1..1000]): %p A053797 map(`-`,select(`>`,SF[2..-1]-SF[1..-2],1),1); # _Robert Israel_, Sep 22 2015 %t A053797 ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* _Michael De Vlieger_, Sep 22 2015 *) %Y A053797 Gaps between terms of A005117. %Y A053797 For squarefree runs we have A120992, antiruns A373127 (firsts A373128). %Y A053797 For composite runs we have A176246 (rest of A046933), antiruns A373403. %Y A053797 For prime runs we have A251092 (rest of A175632), antiruns A027833. %Y A053797 Position of first appearance of n is A373199(n). %Y A053797 For antiruns instead of runs we have A373409. %Y A053797 A005117 lists the squarefree numbers, first differences A076259. %Y A053797 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A053797 Cf. A007674, A020754, A045882, A053806, A061398, A061399. %K A053797 nonn,easy %O A053797 1,2 %A A053797 _N. J. A. Sloane_, Apr 07 2000 %E A053797 Offset set to 1 by _Peter Kagey_, Sep 29 2015