This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053808 #55 Jan 06 2025 10:57:28 %S A053808 1,5,15,36,76,148,273,485,839,1424,2384,3952,6505,10653,17383,28292, %T A053808 45964,74580,120905,195885,317231,513600,831360,1345536,2177521, %U A053808 3523733,5701983,9226500,14929324,24156724,39087009,63244757,102332855,165578768,267912848 %N A053808 Partial sums of A001891. %C A053808 Antidiagonal sums of the convolution array A213579 and row 1 of the convolution array A213590. - _Clark Kimberling_, Jun 18 2012 %C A053808 Also number CG(n,2) of complete games with n players of 2 types. - _N. J. A. Sloane_, Dec 29 2012 %D A053808 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A053808 G. C. Greubel, <a href="/A053808/b053808.txt">Table of n, a(n) for n = 0..1000</a> %H A053808 J. Freixas and S. Kurz, <a href="http://www.wm.uni-bayreuth.de/fileadmin/Sascha/Publikationen2/Fibonacci.pdf">The golden number and Fibonacci sequences in the design of voting structures</a>, 2012. - From _N. J. A. Sloane_, Dec 29 2012 %H A053808 W. Lang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/36-4/elementary36-4.pdf">Problem B-858</a>, Fibonacci Quarterly, 36,3 (1998) 373-374; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/37-2/elementary37-2.pdf">Solution</a>, ibid. 37,2 (1999) 183-184. %H A053808 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,2,-1). %F A053808 a(n) = a(n-1) + a(n-2) + (n+1)^2, a(-n)=0. %F A053808 G.f.: (1+x)/((1-x-x^2)*(1-x)^3). %F A053808 a(n) = Fibonacci(n+6) - (n^2 + 4*n + 8), n >= 2 (see p. 184 of FQ reference). %F A053808 a(n-2) = Sum_{i=0..n} Fibonacci(i)*(n-i)^2. - _Benoit Cloitre_, Mar 06 2004 %t A053808 Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* _G. C. Greubel_, Jul 06 2019 *) %t A053808 LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* _Harvey P. Dale_, Apr 14 2022 *) %o A053808 (PARI) vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ _G. C. Greubel_, Jul 06 2019 %o A053808 (Magma) [Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // _G. C. Greubel_, Jul 06 2019 %o A053808 (Sage) [fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # _G. C. Greubel_, Jul 06 2019 %o A053808 (GAP) List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # _G. C. Greubel_, Jul 06 2019 %Y A053808 Convolution of A000290 (squares) with A000045, n >= 1. (Fibonacci) - _Wolfdieter Lang_, Apr 10 2000 %Y A053808 Right-hand column 7 of triangle A011794. %K A053808 easy,nonn %O A053808 0,2 %A A053808 _Barry E. Williams_, Mar 27 2000