This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053811 #19 Aug 14 2024 01:51:21 %S A053811 2,2,3,5,3,2,7,11,5,2,13,3,17,7,19,23,29,31,11,37,41,43,2,3,13,47,53, %T A053811 5,59,61,67,17,71,73,79,19,83,89,2,97,101,103,107,109,23,113,127,7, %U A053811 131,137,139,149,151,29,157,163,167,31,173,179,181,191,193,197,199,211,223 %N A053811 Primes (in order) occurring in A053810. %H A053811 Amiram Eldar, <a href="/A053811/b053811.txt">Table of n, a(n) for n = 1..10000</a> %F A053811 a(n) = A006530(A053810(n)) = A020639(A053810(n)). - _David Wasserman_, Feb 17 2006 %F A053811 a(n) = A053810(n)^(1/A053812(n)). - _Amiram Eldar_, Nov 21 2020 %o A053811 (PARI) LIM = prime(80)^2; v = vector(400); count = 0; forprime (p = 2, prime(80), x = 2; while (p^x <= LIM, count++; v[count] = p^x; x = nextprime(x + 1))); v = vecsort(vector(count, i, v[i])); A = vector(count); for (i = 1, count, f = factor(v[i]); A[i] = f[1, 1]); A \\ _David Wasserman_, Feb 17 2006 %o A053811 (Python) %o A053811 from sympy import primepi, integer_nthroot, primerange, primefactors %o A053811 def A053811(n): %o A053811 def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length()))) %o A053811 kmin, kmax = 1,2 %o A053811 while f(kmax) >= kmax: %o A053811 kmax <<= 1 %o A053811 while True: %o A053811 kmid = kmax+kmin>>1 %o A053811 if f(kmid) < kmid: %o A053811 kmax = kmid %o A053811 else: %o A053811 kmin = kmid %o A053811 if kmax-kmin <= 1: %o A053811 break %o A053811 return primefactors(kmax)[0] # _Chai Wah Wu_, Aug 13 2024 %Y A053811 Cf. A000040, A000961, A006530, A020639, A025473, A053810, A053812. %K A053811 easy,nonn %O A053811 1,1 %A A053811 _Henry Bottomley_, Mar 28 2000 %E A053811 More terms from _David Wasserman_, Feb 17 2006 %E A053811 Offset corrected by _Amiram Eldar_, Nov 21 2020