This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053812 #20 Aug 14 2024 01:51:17 %S A053812 2,3,2,2,3,5,2,2,3,7,2,5,2,3,2,2,2,2,3,2,2,2,11,7,3,2,2,5,2,2,2,3,2,2, %T A053812 2,3,2,2,13,2,2,2,2,2,3,2,2,5,2,2,2,2,2,3,2,2,2,3,2,2,2,2,2,2,2,2,2,3, %U A053812 2,2,2,2,2,2,2,3,2,2,2,2,7,2,3,2,2,2,2,2,2,3,2,2,2,2,2,2,17,2,2,2,2,3,2,2,2 %N A053812 Exponents occurring in A053810. %H A053812 Amiram Eldar, <a href="/A053812/b053812.txt">Table of n, a(n) for n = 1..10000</a> %F A053812 a(n) = A001222(A053810(n)). - _David Wasserman_, Feb 17 2006 %F A053812 a(n) = log(A053810(n))/log(A053811(n)). - _Amiram Eldar_, Nov 21 2020 %o A053812 (PARI) LIM = prime(80)^2; v = vector(400); count = 0; forprime (p = 2, prime(80), x = 2; while (p^x <= LIM, count++; v[count] = p^x; x = nextprime(x + 1))); v = vecsort(vector(count, i, v[i])); vector(count, i, bigomega(v[i])) \\ _David Wasserman_, Feb 17 2006 %o A053812 (Python) %o A053812 from sympy import primepi, integer_nthroot, primerange, factorint %o A053812 def A053812(n): %o A053812 def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length()))) %o A053812 kmin, kmax = 1,2 %o A053812 while f(kmax) >= kmax: %o A053812 kmax <<= 1 %o A053812 while True: %o A053812 kmid = kmax+kmin>>1 %o A053812 if f(kmid) < kmid: %o A053812 kmax = kmid %o A053812 else: %o A053812 kmin = kmid %o A053812 if kmax-kmin <= 1: %o A053812 break %o A053812 return list(factorint(kmax).values())[0] # _Chai Wah Wu_, Aug 13 2024 %Y A053812 Cf. A000961, A000961, A001222, A025473, A053810, A053811. %K A053812 nonn %O A053812 1,1 %A A053812 _Henry Bottomley_, Mar 28 2000 %E A053812 More terms from _David Wasserman_, Feb 17 2006 %E A053812 Offset corrected by _Amiram Eldar_, Nov 21 2020