This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054073 #21 Aug 28 2019 13:41:03 %S A054073 1,1,2,3,1,2,3,1,4,2,5,3,1,4,2,5,3,1,6,4,2,5,3,1,6,4,2,7,5,3,8,1,6,4, %T A054073 2,7,5,3,8,1,6,4,9,2,7,5,10,3,8,1,6,4,9,2,7,5,10,3,8,1,6,11,4,9,2,7,5, %U A054073 10,3,8,1,6,11,4,9,2,7,12,5,10,3,8,13,1,6,11 %N A054073 Fractal sequence induced by sqrt(2): for k >= 1 let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*sqrt(2)} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),... %C A054073 A054073 generates the interspersion A054077; see A194832 and the Mathematica program. %H A054073 G. C. Greubel, <a href="/A054073/a054073.txt">Table of n, a(n) for n = 1..5000</a> %e A054073 p(1)=(1); p(2)=(1,2); p(3)=(3,1,2); p(4)=(3,1,4,2). %e A054073 When formatted as a triangle, the first 9 rows: %e A054073 1 %e A054073 1 2 %e A054073 3 1 2 %e A054073 3 1 4 2 %e A054073 5 3 1 4 2 %e A054073 5 3 1 6 4 2 %e A054073 5 3 1 6 4 2 7 %e A054073 5 3 8 1 6 4 2 7 %e A054073 5 3 8 1 6 4 9 2 7 %t A054073 r = Sqrt[2]; %t A054073 t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; %t A054073 f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], %t A054073 {n, 1, 20}]] (* A054073 *) %t A054073 TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] %t A054073 row[n_] := Position[f, n]; %t A054073 u = TableForm[Table[row[n], {n, 1, 20}]] %t A054073 g[n_, k_] := Part[row[n], k]; %t A054073 p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, %t A054073 {k, 1, n}]] (* A054077 *) %t A054073 q[n_] := Position[p, n]; Flatten[ %t A054073 Table[q[n], {n, 1, 80}]] (* A054076 *) %t A054073 (* _Clark Kimberling_, Sep 03 2011 *) %Y A054073 Cf. A054071, A054072, A194832. %K A054073 nonn %O A054073 1,3 %A A054073 _Clark Kimberling_