This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054135 #23 May 25 2025 20:47:13 %S A054135 2,4,9,19,39,79,159,319,639,1279,2559,5119,10239,20479,40959,81919, %T A054135 163839,327679,655359,1310719,2621439,5242879,10485759,20971519, %U A054135 41943039,83886079,167772159,335544319,671088639,1342177279 %N A054135 a(n) = T(n,1), array T as in A054134. %C A054135 From _Jianing Song_, May 25 2025: (Start) %C A054135 As _Ely Golden_ noted in A153894, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where the string "{}" is used to represent the empty set and spaces are ignored. First examples: %C A054135 0 = {}; %C A054135 1 = {0} = {{}}; %C A054135 2 = {0,1} = {{},{{}}}; %C A054135 3 = {0,1,2} = {{},{{}},{{},{{}}}}; %C A054135 4 = {0,1,2,3} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}}}. %C A054135 (End) %H A054135 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A054135 For n > 2, a(n) = 10*A000225(n-3) + 9 = 10*(2^(n-3) - 1) + 9 = 10*2^(n-3) - 1. - _Gerald McGarvey_, Aug 25 2004 %F A054135 a(1)=1, a(n) = n + Sum_{i=1..n-1} a(i) for n > 1. - _Gerald McGarvey_, Sep 06 2004 %F A054135 a(n) = 5*2^(n-2) - 1 for n > 1. - _Karl V. Keller, Jr._, Jun 12 2022 %o A054135 (Python) print([2]+[(5*2**(n-2) - 1) for n in range(2, 50)]) # _Karl V. Keller, Jr._, Jun 12 2022 %Y A054135 Identical to A052549 and A153894 except for initial term. %Y A054135 Cf. A267524. %K A054135 nonn %O A054135 1,1 %A A054135 _Clark Kimberling_