cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181332 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k nonzero entries in the top row. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 4, 12, 7, 1, 8, 32, 31, 10, 1, 16, 80, 111, 59, 13, 1, 32, 192, 351, 268, 96, 16, 1, 64, 448, 1023, 1037, 530, 142, 19, 1, 128, 1024, 2815, 3598, 2435, 924, 197, 22, 1, 256, 2304, 7423, 11535, 9843, 4923, 1477, 261, 25, 1, 512, 5120, 18943, 34832
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

The sum of entries in row n is A003480(n).
T(n,1) = A001787(n).
T(n,2) = A055580(n-2) (n>=2).
T(n,3) = A055586(n-3) (n>=3).
Sum(k*T(n,k), k>=0) = A054146(n).

Examples

			T(2,1)=4 because we have (1/1), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
2,4,1;
4,12,7,1;
8,32,31,10,1;
16,80,111,59,13,1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: sum(2^j*binomial(k+j, k)*binomial(n-j-2, k-2), j = 0 .. n-k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

T(n,k) = sum(2^j*binomial(k+j,k)*binomial(n-2-j,k-2), j=0..n-k).
G.f.: G(t,x) = (1-x)^2/(1-3*x+2*x^2-t*x).
The g.f. of column k is x^k/((1-2*x)^(k+1)*(1-x)^(k-1)) (we have a Riordan array).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=2, T(2,1)=4, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham, Nov 26 2013

A181307 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns with only nonzero entries (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 2, 6, 1, 18, 6, 54, 27, 1, 162, 108, 10, 486, 405, 64, 1, 1458, 1458, 334, 14, 4374, 5103, 1549, 117, 1, 13122, 17496, 6652, 760, 18, 39366, 59049, 27064, 4238, 186, 1, 118098, 196830, 105796, 21324, 1450, 22, 354294, 649539, 401041, 99646, 9480, 271
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
Number of entries in row n is 1+floor(n/2).

Examples

			T(2,1) = 1 because we have (1/1) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
  1;
  2;
  6,1;
  18,6;
  54,27,1;
  162,108,10;
		

Crossrefs

Programs

  • Maple
    G := (1-z)^2/(1-4*z+3*z^2-t*z^2): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (1-z)^2/(1-4*z+3*z^2-t*z^2).
G.f. of column k: z^(2*k)/((1-3*z)^(k+1)*(1-z)^(k-1)) (we have a Riordan array).
Sum_{k>=0} T(n,k) = A003480(n).
T(n,0) = 2*3^(n-1) = A008776(n-1).
Sum_{k>=0} k*T(n,k) = A054146(n-1).
Showing 1-2 of 2 results.