This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054192 #10 Nov 02 2023 10:30:19 %S A054192 1,3,8,20,49,119,289,705,1731,4283,10690,26934,68531,176115,457110, %T A054192 1198128,3170607,8468277,22818167,61999531,169778889,468292663, %U A054192 1300270333,3632269293,10202425207,28798822159,81652955889,232429744843,663969970203,1902716831527 %N A054192 Binomial transform of A000029. %H A054192 Alois P. Heinz, <a href="/A054192/b054192.txt">Table of n, a(n) for n = 0..1000</a> %F A054192 a(n) ~ 3^(n+1) / (4*n). - _Vaclav Kotesovec_, Nov 02 2023 %p A054192 with(numtheory): %p A054192 b:= proc(n) option remember; ceil(add( %p A054192 phi(d)*2^(n/d)/(2*n), d=divisors(n))+ %p A054192 `if`(n::odd, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2))) %p A054192 end: %p A054192 a:= n-> add(b(n-j)*binomial(n, j), j=0..n): %p A054192 seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 17 2017 %t A054192 a29[n_] := If[n == 0, 1, DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n) + If[OddQ[n], 2^((n-1)/2), 2^(n/2-1) + 2^(n/2-2)]]; a[n_] := Sum[Binomial[n, k] * a29[k], {k, 0, n}]; Array[a, 28, 0] (* _Jean-François Alcover_, Jul 17 2017 *) %K A054192 nonn %O A054192 0,2 %A A054192 _N. J. A. Sloane_, Apr 29 2000