A054204 Integers expressible as sums of distinct even-subscripted Fibonacci numbers.
1, 3, 4, 8, 9, 11, 12, 21, 22, 24, 25, 29, 30, 32, 33, 55, 56, 58, 59, 63, 64, 66, 67, 76, 77, 79, 80, 84, 85, 87, 88, 144, 145, 147, 148, 152, 153, 155, 156, 165, 166, 168, 169, 173, 174, 176, 177, 199, 200, 202, 203, 207, 208, 210, 211, 220, 221, 223, 224, 228, 229
Offset: 1
Keywords
Examples
a(9)=22 since 9=2^3+2^0 and 22=F(2(3+1)) + F(2(0+1)) = F(8) + F(2).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Marjorie Bicknell-Johnson, The least integer having p Fibonacci representations (p prime), Fibonacci Quarterly 40 (2002), pp. 260-265.
- Marjorie Bicknell-Johnson, Stern's Diatomic Array Applied to Fibonacci Representations, Fibonacci Quarterly 41 (2003), pp. 169-180.
- Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022).
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Mathematica
fibEvenCount[n_] := Plus @@ (Reverse @ IntegerDigits[n, 2])[[2 ;; -1 ;; 2]]; evenIndexed = fibEvenCount /@ Select[Range[10000], BitAnd[#, 2 #] == 0 &]; Position[evenIndexed, ?(# == 0 &)] // Flatten (* _Amiram Eldar, Jan 20 2020*)
-
PARI
my(m=Mod('x,'x^2-3*'x+1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,3); \\ Kevin Ryde, Nov 25 2020
Formula
Subscripts in Zeckendorf representation of a(n) are 2(e+1) where e is exponent used to write n as sum of powers of 2.
Comments