This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054212 #28 Feb 02 2024 20:08:53 %S A054212 0,2955,49995,10365589,75418384,2592877410,100661113419,3989342709778, %T A054212 2826734132736,78074715540102 %N A054212 a(n)^5 is the smallest fifth power whose decimal digits occur with same frequency n. %C A054212 Terms calculated by _Jeff Heleen_. %C A054212 Next term > 2.5*10^17 - _Frank A. Stevenson_, Feb 02 2024 %H A054212 Patrick De Geest, <a href="http://www.worldofnumbers.com/samedigits.htm">Numbers whose digits occur with same frequency</a> %e A054212 2955^5 = 225313610074846875 and digits 0, 1, 2, 3, 4, 5, 6, 7, and 8 each occur twice. %o A054212 (Python) %o A054212 def agen(POW=5): %o A054212 n = 1 %o A054212 while True: %o A054212 k = 0 %o A054212 while True: %o A054212 kpowstr = str(pow(k, POW)) %o A054212 q, r = divmod(len(kpowstr), n) %o A054212 if r == 0: %o A054212 ok = True %o A054212 for d in set(kpowstr): %o A054212 if kpowstr.count(d) != n: %o A054212 ok = False; break %o A054212 if ok: break %o A054212 k += 1 %o A054212 else: # go to next multiple of n digits: (q+1)*n %o A054212 k = max(k+1, int((10**((q+1)*n-1))**(1/POW))) %o A054212 yield k %o A054212 n += 1 %o A054212 g = agen() # call with POW=4, 3, 2 for A052093, A052071, A052069 %o A054212 print([next(g) for n in range(1, 5)]) # _Michael S. Branicky_, Dec 17 2020 %Y A054212 Cf. A054213, A052093, A052094, A052069, A052071. %K A054212 nonn,base,hard,more %O A054212 1,2 %A A054212 _Patrick De Geest_, Feb 15 2000 %E A054212 Offset corrected by _Michel Marcus_, Aug 12 2015 %E A054212 a(7)-a(8) from _Michael S. Branicky_, Dec 17 2020 %E A054212 a(9)-a(10) from _Frank A. Stevenson_, Jan 02 2024