This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054258 #16 May 29 2023 08:28:32 %S A054258 2607,4007,4069,7597,12411,13583,23041,31113,32619,46187,48469,55777, %T A054258 61411,64387,71143,73837,84761,103559,123797,124043,126613,136509, %U A054258 142019,147449,183981,186889,200183,204219,214819,221101,224123,230977,235493,249049,256489 %N A054258 Concatenation of n in base 2 up to base 10 and n in base 10 down to base 2 is prime, all numbers are interpreted as decimals. %H A054258 Michael S. Branicky, <a href="/A054258/b054258.txt">Table of n, a(n) for n = 1..10000</a> %e A054258 a(1) = 2607 is a term since both 10100010111110120120220233404122002310413505735162607 and %e A054258 26073516505710413200234041222023310120120101000101111 are prime. %t A054258 Select[Range[250000],AllTrue[{FromDigits[Flatten[Table[IntegerDigits[#,b],{b,2,10}]]],FromDigits[ Flatten[Table[IntegerDigits[#,b],{b,10,2,-1}]]]},PrimeQ]&] (* _Harvey P. Dale_, May 28 2023 *) %o A054258 (Python) %o A054258 from gmpy2 import digits, is_prime %o A054258 def ok(n): return is_prime(int("".join(digits(n, b) for b in list(range(2, 11))))) and is_prime(int("".join(digits(n, b) for b in list(range(10, 1, -1))))) %o A054258 print([k for k in range(234567) if ok(k)]) # _Michael S. Branicky_, May 28 2023 %Y A054258 Intersection of A054256 and A054257. %K A054258 nonn,base %O A054258 1,1 %A A054258 _Patrick De Geest_, Feb 15 2000 %E A054258 Offset changed to 1 and a(33) and beyond from _Michael S. Branicky_, May 28 2023