This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054268 #32 Feb 16 2025 08:32:42 %S A054268 3,5,109,111111109,259259257 %N A054268 Sum of composite numbers between prime p and nextprime(p) is a repdigit. %C A054268 No additional terms below 472882027. %C A054268 No additional terms below 10^58. - _Chai Wah Wu_, Jun 01 2024 %H A054268 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repdigit.html">Repdigit</a> %F A054268 Numbers A000040(n) for n > 1 such that A001043(n)*(A001223(n)-1)/2 is in A010785. - _Chai Wah Wu_, Aug 12 2014 %e A054268 a(5) is ok since between 259259257 and nextprime 259259261 we get the sum 259259258 + 259259259 + 259259260 which yield repdigit 777777777. %t A054268 repQ[n_]:=Count[DigitCount[n],0]==9; Select[Prime[Range[2,14500000]], repQ[Total[Range[#+1,NextPrime[#]-1]]]&] (* _Harvey P. Dale_, Jan 29 2011 *) %o A054268 (Python) %o A054268 from sympy import prime %o A054268 A054268 = [prime(n) for n in range(2,10**5) if len(set(str(int((prime(n+1)-prime(n)-1)*(prime(n+1)+prime(n))/2)))) == 1] %o A054268 # _Chai Wah Wu_, Aug 12 2014 %o A054268 (Python) %o A054268 from itertools import count, islice %o A054268 from sympy import isprime, nextprime %o A054268 from sympy.abc import x,y %o A054268 from sympy.solvers.diophantine.diophantine import diop_quadratic %o A054268 def A054268_gen(): # generator of terms %o A054268 for l in count(1): %o A054268 c = [] %o A054268 for m in range(1,10): %o A054268 k = m*(10**l-1)//9<<1 %o A054268 for a, b in diop_quadratic((x-y-1)*(x+y)-k): %o A054268 if isprime(b) and a == nextprime(b): %o A054268 c.append(b) %o A054268 yield from sorted(c) %o A054268 A054268_list = list(islice(A054268_gen(),5)) # _Chai Wah Wu_, Jun 01 2024 %Y A054268 Cf. A010785, A028987, A028988, A046933, A054264, A054265, A054266, A054267. %K A054268 nonn,base,hard %O A054268 1,1 %A A054268 _Patrick De Geest_, Apr 15 2000 %E A054268 Offset changed by _Andrew Howroyd_, Aug 14 2024