This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054325 #12 Sep 08 2022 08:45:00 %S A054325 7,336,7392,109824,1281280,12673024,111132672,889061376,6615662592, %T A054325 46425702400,310388981760,1992378286080,12352745373696,74327630282752, %U A054325 435713694760960,2496217812566016,14012859084177408,77247357640507392 %N A054325 Seventh column of Lanczos triangle A053125 (decreasing powers). %D A054325 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518. %D A054325 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. %H A054325 G. C. Greubel, <a href="/A054325/b054325.txt">Table of n, a(n) for n = 0..1000</a> %H A054325 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A054325 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (28, -336, 2240, -8960, 21504, -28672, 16384). %F A054325 a(n) = 4^n*binomial(2*n+7, 6) = A053125(n+6, 6). %F A054325 G.f.: (7 +140*x +336*x^2 +64*x^3)/(1-4*x)^7. %t A054325 Table[4^n*Binomial[2*n+7, 6], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *) %o A054325 (PARI) vector(20, n, n--; 4^n*binomial(2*n+7, 6)) \\ _G. C. Greubel_, Jul 22 2019 %o A054325 (Magma) [4^n*Binomial(2*n+7, 6): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019 %o A054325 (Sage) [4^n*binomial(2*n+7, 6) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019 %o A054325 (GAP) List([0..20], n-> 4^n*Binomial(2*n+7, 6)); # _G. C. Greubel_, Jul 22 2019 %Y A054325 Cf. A053125, A054324. %K A054325 nonn,easy %O A054325 0,1 %A A054325 _Wolfdieter Lang_