cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054329 One quarter of fourth unsigned column of Lanczos' triangle A053125.

This page as a plain text file.
%I A054329 #11 Sep 08 2022 08:45:00
%S A054329 1,20,224,1920,14080,93184,573440,3342336,18677760,100925440,
%T A054329 530579456,2726297600,13740539904,68115496960,332859965440,
%U A054329 1606317768704,7666516623360,36232344109056,169737107537920,788899592929280
%N A054329 One quarter of fourth unsigned column of Lanczos' triangle A053125.
%D A054329 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D A054329 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A054329 G. C. Greubel, <a href="/A054329/b054329.txt">Table of n, a(n) for n = 0..1000</a>
%H A054329 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A054329 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (16,-96,256,-256).
%F A054329 a(n)= 4^(n-1)*binomial(2*n+4, 3)= -A053125(n+3, 3)/4 = A054322(n)/4.
%F A054329 G.f.: (1+4*x)/(1-4*x)^4.
%F A054329 E.g.f.: (3 + 48*x + 120*x^2 + 64*x^3)*exp(4*x)/3. - _G. C. Greubel_, Jul 22 2019
%t A054329 Table[4^(n-1)*Binomial[2*n+4, 3], {n,0,30}] (* _G. C. Greubel_, Jul 22 2019 *)
%o A054329 (PARI) vector(30, n, n--; 4^(n-1)*binomial(2*n+4,3)) \\ _G. C. Greubel_, Jul 22 2019
%o A054329 (Magma) [4^(n-1)*Binomial(2*n+4,3): n in [0..30]]; // _G. C. Greubel_, Jul 22 2019
%o A054329 (Sage) [4^(n-1)*binomial(2*n+4,3) for n in (0..30)] # _G. C. Greubel_, Jul 22 2019
%o A054329 (GAP) List([0..30], n-> 4^(n-1)*Binomial(2*n+4,3)); # _G. C. Greubel_, Jul 22 2019
%Y A054329 Cf. A054322, A053125.
%K A054329 easy,nonn
%O A054329 0,2
%A A054329 _Wolfdieter Lang_