This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054330 #11 Sep 08 2022 08:45:00 %S A054330 3,112,2016,25344,256256,2236416,17547264,127008768,862912512, %T A054330 5571084288,34487664640,206108098560,1195426971648,6757057298432, %U A054330 37346888122368,202396038856704,1077912237244416,5652245681012736 %N A054330 One half of sixth unsigned column of Lanczos' triangle A053125. %D A054330 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518. %D A054330 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. %H A054330 G. C. Greubel, <a href="/A054330/b054330.txt">Table of n, a(n) for n = 0..1000</a> %H A054330 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A054330 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (24, -240, 1280, -3840, 6144, -4096). %F A054330 a(n)= 2^(2*n-1)*binomial(2*n+6, 5) = -A053125(n+5, 5)/2 = A054324(n)/2. %F A054330 G.f.: (4*x+3)*(12*x+1)/(1-4*x)^6. %F A054330 E.g.f.: (90 + 3000*x + 17520*x^2 + 31680*x^3 + 20480*x^4 + 4096*x^5)* exp(4*x)/30. - _G. C. Greubel_, Jul 22 2019 %t A054330 Table[2^(2*n-1)*Binomial[2*n+6, 5], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *) %o A054330 (PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+6,5)) \\ _G. C. Greubel_, Jul 22 2019 %o A054330 (Magma) [2^(2*n-1)*Binomial(2*n+6,5): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019 %o A054330 (Sage) [2^(2*n-1)*binomial(2*n+6,5) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019 %o A054330 (GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+6,5)); # _G. C. Greubel_, Jul 22 2019 %Y A054330 Cf. A054324, A053125. %K A054330 easy,nonn %O A054330 0,1 %A A054330 _Wolfdieter Lang_