cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054330 One half of sixth unsigned column of Lanczos' triangle A053125.

This page as a plain text file.
%I A054330 #11 Sep 08 2022 08:45:00
%S A054330 3,112,2016,25344,256256,2236416,17547264,127008768,862912512,
%T A054330 5571084288,34487664640,206108098560,1195426971648,6757057298432,
%U A054330 37346888122368,202396038856704,1077912237244416,5652245681012736
%N A054330 One half of sixth unsigned column of Lanczos' triangle A053125.
%D A054330 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D A054330 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A054330 G. C. Greubel, <a href="/A054330/b054330.txt">Table of n, a(n) for n = 0..1000</a>
%H A054330 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A054330 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (24, -240, 1280, -3840, 6144, -4096).
%F A054330 a(n)= 2^(2*n-1)*binomial(2*n+6, 5) = -A053125(n+5, 5)/2 = A054324(n)/2.
%F A054330 G.f.: (4*x+3)*(12*x+1)/(1-4*x)^6.
%F A054330 E.g.f.: (90 + 3000*x + 17520*x^2 + 31680*x^3 + 20480*x^4 + 4096*x^5)* exp(4*x)/30. - _G. C. Greubel_, Jul 22 2019
%t A054330 Table[2^(2*n-1)*Binomial[2*n+6, 5], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *)
%o A054330 (PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+6,5)) \\ _G. C. Greubel_, Jul 22 2019
%o A054330 (Magma) [2^(2*n-1)*Binomial(2*n+6,5): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019
%o A054330 (Sage) [2^(2*n-1)*binomial(2*n+6,5) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019
%o A054330 (GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+6,5)); # _G. C. Greubel_, Jul 22 2019
%Y A054330 Cf. A054324, A053125.
%K A054330 easy,nonn
%O A054330 0,1
%A A054330 _Wolfdieter Lang_