cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054331 One eighth of eighth unsigned column of Lanczos' triangle A053125.

This page as a plain text file.
%I A054331 #21 Feb 02 2023 18:28:56
%S A054331 1,60,1584,27456,366080,4073472,39690240,349274112,2835283968,
%T A054331 21554790400,155194490880,1067345510400,7058711642112,45127489814528,
%U A054331 280101660917760,1693862087098368,10009185060126720,57935518230380544
%N A054331 One eighth of eighth unsigned column of Lanczos' triangle A053125.
%D A054331 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D A054331 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A054331 G. C. Greubel, <a href="/A054331/b054331.txt">Table of n, a(n) for n = 0..1000</a>
%H A054331 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A054331 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (32,-448,3584,-17920,57344,-114688,131072,-65536).
%F A054331 a(n) = 2^(2*n-3)*binomial(2*n+8, 7) = -A053125(n+7, 7)/8 = A054326(n)/8.
%F A054331 G.f. (1+4*x)*(1+24*x+16*x^2)/(1-4*x)^8.
%t A054331 Table[4^n Binomial[2n+8,7]/8,{n,0,20}] (* _Harvey P. Dale_, Nov 03 2011 *)
%t A054331 LinearRecurrence[{32,-448,3584,-17920,57344,-114688,131072,-65536},{1,60,1584,27456,366080,4073472,39690240,349274112},20] (* _Harvey P. Dale_, Feb 25 2022 *)
%o A054331 (PARI) vector(20, n, n--; 2^(2*n-3)*binomial(2*n+8, 7)) \\ _G. C. Greubel_, Jul 22 2019
%o A054331 (Magma) [2^(2*n-3)*Binomial(2*n+8, 7): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019
%o A054331 (Sage) [2^(2*n-3)*binomial(2*n+8, 7) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019
%o A054331 (GAP) List([0..20], n-> 2^(2*n-3)*Binomial(2*n+8, 7)); # _G. C. Greubel_, Jul 22 2019
%Y A054331 Cf. A054326, A053125.
%K A054331 easy,nice,nonn
%O A054331 0,2
%A A054331 _Wolfdieter Lang_