This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054332 #11 Sep 08 2022 08:45:00 %S A054332 5,440,16016,366080,6223360,85995520,1018716160,10711072768, %T A054332 102385254400,905301196800,7501067059200,58822597017600, %U A054332 439993025691648,3158924287016960,21879051958353920,146801380881858560 %N A054332 One half of tenth unsigned column of Lanczos triangle A053125 (decreasing powers). %D A054332 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518. %D A054332 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. %H A054332 G. C. Greubel, <a href="/A054332/b054332.txt">Table of n, a(n) for n = 0..1000</a> %H A054332 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A054332 a(n) = 2^(2*n-1)*binomial(2*n+10, 9) = -A053125(n+9, 9)/2 = A054328(n)/2. %F A054332 G.f.: (1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10. %t A054332 Table[2^(2*n-1)*Binomial[2*n+10,9], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *) %o A054332 (PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+10, 9)) \\ _G. C. Greubel_, Jul 22 2019 %o A054332 (Magma) [2^(2*n-1)*Binomial(2*n+10, 9): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019 %o A054332 (Sage) [2^(2*n-1)*binomial(2*n+10, 9) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019 %o A054332 (GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+10, 9)); # _G. C. Greubel_, Jul 22 2019 %Y A054332 Cf. A053125, A054328. %K A054332 easy,nonn %O A054332 0,1 %A A054332 _Wolfdieter Lang_