cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054332 One half of tenth unsigned column of Lanczos triangle A053125 (decreasing powers).

This page as a plain text file.
%I A054332 #11 Sep 08 2022 08:45:00
%S A054332 5,440,16016,366080,6223360,85995520,1018716160,10711072768,
%T A054332 102385254400,905301196800,7501067059200,58822597017600,
%U A054332 439993025691648,3158924287016960,21879051958353920,146801380881858560
%N A054332 One half of tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
%D A054332 C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D A054332 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A054332 G. C. Greubel, <a href="/A054332/b054332.txt">Table of n, a(n) for n = 0..1000</a>
%H A054332 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A054332 a(n) = 2^(2*n-1)*binomial(2*n+10, 9) = -A053125(n+9, 9)/2 = A054328(n)/2.
%F A054332 G.f.: (1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.
%t A054332 Table[2^(2*n-1)*Binomial[2*n+10,9], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *)
%o A054332 (PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+10, 9)) \\ _G. C. Greubel_, Jul 22 2019
%o A054332 (Magma) [2^(2*n-1)*Binomial(2*n+10, 9): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019
%o A054332 (Sage) [2^(2*n-1)*binomial(2*n+10, 9) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019
%o A054332 (GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+10, 9)); # _G. C. Greubel_, Jul 22 2019
%Y A054332 Cf. A053125, A054328.
%K A054332 easy,nonn
%O A054332 0,1
%A A054332 _Wolfdieter Lang_