This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054342 #24 Apr 17 2022 03:48:25 %S A054342 5,53,211,20201,16787,69623,255803,247141,3565979,6314447,4911311, %T A054342 12012743,23346809,43607429,34346287,36598607,51042053,460475569, %U A054342 652576429,742585297,530324449,807620777,2988119339,12447231899,383204683,4470608101,5007182863,36589015601 %N A054342 First occurrence of distances of equidistant lonely primes. Each equidistant prime is at the same distance (or has the same gap) from the preceding prime and the next prime. %C A054342 Or, least balanced primes: starting with 2nd term, 53, the smallest prime such that the distances to the next smallest and next largest primes are both equal to 6n. %C A054342 The distances corresponding to the above terms are 2, 6, 12, 18, 24, ..., 192, 198, 204, 210, 218, 224. %C A054342 a(1) is the smallest prime p such that {p-2, p, p+2} are three consecutive primes. For n>1, a(n) is the smallest prime p such that {p-6*(n-1), p, p+6*(n-1)} are three consecutive primes. - _Jeppe Stig Nielsen_, Apr 16 2022 %H A054342 Jeppe Stig Nielsen, <a href="/A054342/b054342.txt">Table of n, a(n) for n = 1..53</a> (based on A052187 b-file) %F A054342 a(1) = A052187(1) + 2. For n>1, a(n) = A052187(n) + 6*(n-1). - _Jeppe Stig Nielsen_, Apr 16 2022 %e A054342 211 is an equidistant lonely prime with distance 12. This is the first occurrence of the distance 12, thus 211 is in the sequence. %e A054342 20201 is a least balanced prime because it is the third term in the sequence and is separated from both the next lower and next higher primes by 3 * 6 = 18. %e A054342 Here is the beginning of the table of equidistant lonely primes. %e A054342 Equivalent to 3 consecutive primes in arithmetic progression. %e A054342 * indicates a maximal gap. This table gives rise to A058867, A058868 and the present sequence. %e A054342 Gap First occurrence %e A054342 --- ---------------- %e A054342 2* 5 %e A054342 6* 53 %e A054342 12* 211 %e A054342 18 20201 %e A054342 24* 16787 %e A054342 30* 69623 %e A054342 36 255803 %e A054342 42* 247141 %e A054342 48* 3565979 %e A054342 54 6314447 %e A054342 60* 4911311 %e A054342 66* 12012743 %e A054342 72* 23346809 %e A054342 78 43607429 %e A054342 84* 34346287 %e A054342 90* 36598607 %e A054342 96* 51042053 %e A054342 102 460475569 %e A054342 108 652576429 %Y A054342 Cf. A006562, A052187, A058867, A058868, A103709. %K A054342 nonn %O A054342 1,1 %A A054342 _Harvey P. Dale_, May 06 2000 %E A054342 More terms from _Jud McCranie_, Jun 13 2000 %E A054342 Further terms from Harvey Dubner (harvey(AT)dubner.com), Sep 11 2004 %E A054342 Entry revised by _N. J. A. Sloane_, Jul 23 2006 %E A054342 4 further terms from Walter Neumann (neumann(AT)math.columbia.edu), Aug 14 2006 %E A054342 a(28) corrected, and terms after a(28) moved from Data section to b-file by _Jeppe Stig Nielsen_, Apr 16 2022