cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054358 Number of unlabeled asymmetric 2-ary cacti having n polygons.

This page as a plain text file.
%I A054358 #21 Jan 09 2024 09:38:48
%S A054358 1,1,0,1,2,8,18,61,170,538,1654,5344,17252,57146,190786,646305,
%T A054358 2209050,7626164,26532732,93013852,328196780,1165060170,4158266282,
%U A054358 14915635376,53745892932,194477856048,706436256598,2575316698792,9419568272632
%N A054358 Number of unlabeled asymmetric 2-ary cacti having n polygons.
%H A054358 Andrew Howroyd, <a href="/A054358/b054358.txt">Table of n, a(n) for n = 0..200</a>
%H A054358 Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, <a href="https://doi.org/10.1006/aama.1999.0665">Enumeration of m-ary cacti</a>, Advances in Applied Mathematics, 24 (2000), 22-56.
%H A054358 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%F A054358 a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(2*d, d)) - binomial(2*n, n)/(n+1) for n > 0. - _Andrew Howroyd_, May 02 2018
%t A054358 a[0] = 1; a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[2#, #]&]/n - Binomial[2n, n]/(n+1);
%t A054358 Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)
%o A054358 (PARI) a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ _Andrew Howroyd_, May 02 2018
%Y A054358 Column k=2 of A303913.
%Y A054358 Cf. A002995, A054357.
%K A054358 nonn
%O A054358 0,5
%A A054358 _Simon Plouffe_
%E A054358 More terms from _Vladeta Jovovic_, Oct 04 2007