This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054363 #22 Jan 09 2024 09:39:48 %S A054363 1,1,5,15,85,510,4051,33130,291925,2661255,25059670,241724380, %T A054363 2379912355,23833198140,242173108050,2491817151160,25921371278805, %U A054363 272256630756265,2884054952424115,30784716141936525,330853932861650870,3577823885433087690,38907658120970944700 %N A054363 Number of unlabeled 5-ary cacti having n polygons. %H A054363 Andrew Howroyd, <a href="/A054363/b054363.txt">Table of n, a(n) for n = 0..200</a> %H A054363 Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, <a href="https://doi.org/10.1006/aama.1999.0665">Enumeration of m-ary cacti</a>, Advances in Applied Mathematics, 24 (2000), 22-56. %H A054363 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a> %F A054363 a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - _Andrew Howroyd_, May 02 2018 %F A054363 a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 7/2)). - _Vaclav Kotesovec_, Jul 17 2017 %t A054363 a[n_] := If[n == 0, 1, (Binomial[5*n, n]/(4*n + 1) + DivisorSum[n, Binomial[5*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Jul 17 2017 *) %o A054363 (PARI) a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ _Andrew Howroyd_, May 02 2018 %Y A054363 Column k=5 of A303912. %Y A054363 Cf. A054364, A054365. %K A054363 nonn %O A054363 0,3 %A A054363 _Simon Plouffe_ %E A054363 More terms from _Jean-François Alcover_, Jul 17 2017