This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054364 #18 Jan 09 2024 09:39:52 %S A054364 1,1,0,10,60,505,3876,33125,290700,2661100,25049020,241724375, %T A054364 2379812100,23833198135,242172147380,2491817140380,25921361665100, %U A054364 272256630756260,2884054853862540,30784716141936520,330853931834416520,3577823885432126890,38907658110093347780 %N A054364 Number of unlabeled asymmetric 5-ary cacti having n polygons. %H A054364 Andrew Howroyd, <a href="/A054364/b054364.txt">Table of n, a(n) for n = 0..200</a> %H A054364 Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, <a href="https://doi.org/10.1006/aama.1999.0665">Enumeration of m-ary cacti</a>, Advances in Applied Mathematics, 24 (2000), 22-56. %H A054364 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a> %F A054364 a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - _Andrew Howroyd_, May 02 2018 %t A054364 a[0] = 1; %t A054364 a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[5#, #]&]/n - 4 Binomial[5n, n]/(4n+1); %t A054364 Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *) %o A054364 (PARI) a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ _Andrew Howroyd_, May 02 2018 %Y A054364 Column k=5 of A303913. %Y A054364 Cf. A054363, A054365. %K A054364 nonn %O A054364 0,4 %A A054364 _Simon Plouffe_ %E A054364 Terms a(13) and beyond from _Andrew Howroyd_, May 02 2018