This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054373 #24 Feb 16 2025 08:32:42 %S A054373 0,-8,0,0,-2048,0,192,16384,28311552,0,0,-1179648,0,29686813949952,0, %T A054373 -7680,67108864,-289910292480,5699868278390784, %U A054373 -3039929748475084800000,0,0,-838860800,0,1094374709451030528,0,-37180135792929290696471347200000,0 %N A054373 Table of resultants for Hermite polynomials H_k(x) and H_n(x). %H A054373 G. C. Greubel, <a href="/A054373/b054373.txt">Rows n=1..30 of triangle, flattened</a> %H A054373 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial.</a> %H A054373 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a> %e A054373 {0}, %e A054373 {-8, 0}, %e A054373 {0, -2048, 0}, %e A054373 {192, 16384, 28311552, 0}, %e A054373 {0, -1179648, 0, 29686813949952, 0}, %e A054373 {-7680, 67108864, -289910292480, 5699868278390784, -3039929748475084800000, 0} %t A054373 Flatten[Table[Resultant[HermiteH[n, x], HermiteH[k, x], x], {k, 20}, {n, k}]] %o A054373 (PARI) T(n, k) = polresultant(polhermite(n), polhermite(k)); \\ _Michel Marcus_, Jul 10 2018 %K A054373 sign,easy,tabl %O A054373 1,2 %A A054373 _Eric W. Weisstein_