A054393 Number of permutations with certain forbidden subsequences.
1, 1, 2, 5, 14, 42, 132, 428, 1417, 4757, 16119, 54963, 188219, 646460, 2224944, 7668915, 26461005, 91371594, 315689675, 1091166442, 3772747245, 13047503222, 45131078409, 156129312025, 540181837728, 1869097588540, 6467740095295
Offset: 0
Keywords
Links
- E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
- Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Crossrefs
Programs
-
Mathematica
a[0] = 1; a[n_] := Module[{M}, M = Table[If[j < i || i == j && i <= 5 || j == i+1, 1, 0], {i, 1, n}, {j, 1, n}]; MatrixPower[M, n][[1, 1]]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Aug 16 2018, after A054391 *)
Formula
Conjecture: (-n+3)*a(n) + (10*n-33)*a(n-1) + 5*(-7*n+24)*a(n-2) + 2*(22*n-63)*a(n-3) + 2*(5*n-78)*a(n-4) + (-55*n+357)*a(n-5) + (22*n-135)*a(n-6) + 3*(-n+6)*a(n-7) = 0. - R. J. Mathar, Aug 09 2015