cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054410 Susceptibility series H_3 for 2-dimensional Ising model (divided by 2).

This page as a plain text file.
%I A054410 #25 Nov 24 2024 18:15:22
%S A054410 1,12,52,148,328,620,1052,1652,2448,3468,4740,6292,8152,10348,12908,
%T A054410 15860,19232,23052,27348,32148,37480,43372,49852,56948,64688,73100,
%U A054410 82212,92052,102648,114028,126220,139252,153152,167948,183668,200340,217992,236652
%N A054410 Susceptibility series H_3 for 2-dimensional Ising model (divided by 2).
%H A054410 Colin Barker, <a href="/A054410/b054410.txt">Table of n, a(n) for n = 0..1000</a>
%H A054410 A. J. Guttmann, <a href="https://doi.org/10.1016/S0012-365X(99)00262-9">Indicators of solvability for lattice models</a>, Discrete Math., 217 (2000), 167-189.
%H A054410 D. Hansel et al., <a href="http://dx.doi.org/10.1007/BF01010400">Analytical properties of the anisotropic cubic Ising model</a>, J. Stat. Phys., 48 (1987), 69-80.
%H A054410 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A054410 G.f.: (1 +8*x +10*x^2 +8*x^3 +x^4)/(1-x)^4.
%F A054410 From _Colin Barker_, Dec 09 2016: (Start)
%F A054410 a(n) = 2*n*(11 + 7*n^2)/3 for n>0.
%F A054410 a(0)=1, a(1)=12, a(2)=52, a(3)=148, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. (End)
%F A054410 E.g.f.: (3 + 2*x*(18 + 21*x + 7*x^2)*exp(x))/3. - _G. C. Greubel_, Jul 31 2019
%t A054410 CoefficientList[Series[(1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4, {x,0,40}],x] (* or *) a[0]=1; a[n_]:= 2*n*(11+7*n^2)/3; Table[a[n], {n,0,40}] (* _Indranil Ghosh_, Feb 24 2017 *)
%t A054410 LinearRecurrence[{4,-6,4,-1},{1,12,52,148,328},50] (* _Harvey P. Dale_, Nov 24 2024 *)
%o A054410 (PARI) Vec((1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4 + O(x^40)) \\ _Colin Barker_, Dec 09 2016
%o A054410 (PARI) vector(40, n, n--; if(n==0,1, 2*n*(11+7*n^2)/3)) \\ _G. C. Greubel_, Jul 31 2019
%o A054410 (Python)
%o A054410 def A054410(n):
%o A054410     if n == 0: return 1
%o A054410     return 2*(n*(11 + 7*n**2))/3 # _Indranil Ghosh_, Feb 24 2017
%o A054410 (Magma) [1] cat [2*n*(11+7*n^2)/3: n in [1..40]]; // _G. C. Greubel_, Jul 31 2019
%o A054410 (Sage) [1]+[2*n*(11+7*n^2)/3 for n in (1..40)] # _G. C. Greubel_, Jul 31 2019
%o A054410 (GAP) Concatenation([1], List([1..40], n-> 2*n*(11+7*n^2)/3)); # _G. C. Greubel_, Jul 31 2019
%Y A054410 Cf. A008574, A054275, A054389, A054764.
%K A054410 nonn,easy
%O A054410 0,2
%A A054410 _N. J. A. Sloane_, May 09 2000