cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054433 Numbers formed by interpreting the reduced residue set of every even number as a Zeckendorf Expansion.

This page as a plain text file.
%I A054433 #9 Oct 19 2019 21:25:58
%S A054433 1,4,9,33,80,174,588,1596,3135,9950,28512,56268,196040,496496,888300,
%T A054433 3524577,9224880,18118362,63239220,150527400,310190454,1129200138,
%U A054433 2971168704,5834056536,18513646430,53213956640,104687896833
%N A054433 Numbers formed by interpreting the reduced residue set of every even number as a Zeckendorf Expansion.
%H A054433 Amiram Eldar, <a href="/A054433/b054433.txt">Table of n, a(n) for n = 1..2392</a>
%F A054433 a(n) = A054433_as_sum(2*n).
%p A054433 with(combinat,fibonacci); # one_or_zero given at A054431.
%p A054433 A054433_as_sum := proc(n) local i; RETURN(add((one_or_zero(igcd(n,i))*fibonacci(i+1)),i=1..(n-1))); end;
%t A054433 r[n_] := Sum[If[GCD[n, k] == 1, Fibonacci[n + 1 - k], 0], {k, 1, n}]; r /@ (2*Range[27]) (* _Amiram Eldar_, Oct 19 2019 *)
%Y A054433 Cf. A054432, A048757, A051258, A063683.
%K A054433 nonn
%O A054433 1,2
%A A054433 _Antti Karttunen_