cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054441 Convolution of (shifted) A026671 with A000984 (central binomial coefficients of even order).

This page as a plain text file.
%I A054441 #35 Sep 08 2022 08:45:01
%S A054441 0,1,5,23,103,455,1993,8679,37633,162643,701075,3015563,12948083,
%T A054441 55513327,237705547,1016736115,4344766607,18550920063,79149527249,
%U A054441 337482635279,1438155203665,6125448713739,26077796587441,110974892937943,472081467302933,2007534192877275,8534465842495133
%N A054441 Convolution of (shifted) A026671 with A000984 (central binomial coefficients of even order).
%H A054441 Vincenzo Librandi, <a href="/A054441/b054441.txt">Table of n, a(n) for n = 0..200</a>
%F A054441 G.f.: cbie(x)*x/(-x+1/cbie(x)), with cbie(x)=1/sqrt(1-4*x) = g.f. for A000984.
%F A054441 a(n) = Sum_{k=0..n} A026671(k-1)*binomial(2*(n-k), n-k), with A026671(-1):= 0.
%F A054441 a(n) = A026671(n) - binomial(2*n, n).
%F A054441 a(n) = Sum_{k=1..n} a(k-1)*binomial(2*(n-k), n-k) + 4^(n-1), n >= 1.
%F A054441 Recurrence: (n-2)*a(n) = 2*(4*n-9)*a(n-1) - (15*n-38)*a(n-2) - 2*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 09 2012
%F A054441 a(n) ~ (sqrt(5)+2)^n/sqrt(5). - _Vaclav Kotesovec_, Oct 09 2012
%F A054441 a(n) = Sum_{k=1..n} binomial(2*n,n-k)*F(k), where F denotes a Fibonacci number (A000045). - _Vladimir Kruchinin_, Mar 19 2016
%t A054441 Table[SeriesCoefficient[x/((-x+Sqrt[1-4*x])*Sqrt[1-4*x]),{x,0,n}],{n,0,30}] (* _Vaclav Kotesovec_, Oct 09 2012 *)
%o A054441 (PARI) x='x+O('x^66); concat([0],Vec(x/((-x+sqrt(1-4*x))*sqrt(1-4*x)))) \\ _Joerg Arndt_, May 06 2013
%o A054441 (Maxima)
%o A054441 a(n):=sum(fib(k)*binomial(2*n,n-k),k,1,n); /* _Vladimir Kruchinin_, Mar 19 2016 */
%o A054441 (Magma) [(&+[Binomial(2*n, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Jul 15 2019
%o A054441 (Sage) [sum(binomial(2*n, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # _G. C. Greubel_, Jul 15 2019
%o A054441 (GAP) List([0..30], n-> Sum([0..n], k-> Binomial(2*n, n-k)*Fibonacci(k) )); # _G. C. Greubel_, Jul 15 2019
%Y A054441 Cf. A000045, A000984, A026671.
%K A054441 nonn,easy
%O A054441 0,3
%A A054441 _Wolfdieter Lang_, Mar 21 2000