A054446 Triangle of partial row sums of triangle A037027(n,m), n >= m >= 0 (Fibonacci convolution triangle).
1, 2, 1, 5, 3, 1, 12, 9, 4, 1, 29, 24, 14, 5, 1, 70, 62, 42, 20, 6, 1, 169, 156, 118, 67, 27, 7, 1, 408, 387, 316, 205, 100, 35, 8, 1, 985, 951, 821, 588, 332, 142, 44, 9, 1, 2378, 2323, 2088, 1614, 1020, 509, 194, 54, 10, 1, 5741, 5652, 5232, 4290, 2966, 1671, 747, 257
Offset: 0
Examples
{1}; {2,1}; {5,3,1}; {12,9,4,1};... Fourth row polynomial (n=3): p(3,x)= 12+9*x+4*x^2+x^3
Formula
a(n, m)=sum(A037027(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j-1, m)*A037027(n-j, 0), j=m..n) + A037027(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: Pell(x)*(x*Fib(x))^m, m >= 0, with Fib(x) = g.f. A000045(n+1) and Pell(x) = g.f. A000129(n+1).
T(n,0) = 2*T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) for k>0, T(0,0) = 1, T(1,0) = 2, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 26 2014
Comments