cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054447 Row sums of triangle A054446 (partial row sums triangle of Fibonacci convolution triangle).

This page as a plain text file.
%I A054447 #55 Mar 03 2024 11:14:04
%S A054447 1,3,9,26,73,201,545,1460,3873,10191,26633,69198,178889,460437,
%T A054447 1180545,3016552,7684481,19522203,49473097,125093506,315654537,
%U A054447 795016545,1998909985,5017895196,12578040097,31485713511,78716283081,196563649718,490301138569,1221726409005
%N A054447 Row sums of triangle A054446 (partial row sums triangle of Fibonacci convolution triangle).
%H A054447 Michael De Vlieger, <a href="/A054447/b054447.txt">Table of n, a(n) for n = 0..2604</a>
%H A054447 Oboifeng Dira, <a href="http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_201706&amp;filename=07_41(6).pdf">A Note on Composition and Recursion</a>, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
%H A054447 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -2, -4, -1).
%F A054447 a(n) = Sum_{m=0..n} A054446(n,m) = ((n+1)*P(n+2)+(2-n)*P(n+1))/4, with P(n)=A000129(n) (Pell numbers).
%F A054447 G.f.: Pell(x)/(1-x*Fib(x)) = (Pell(x)^2)/Fib(x), with Pell(x)= 1/(1-2*x-x^2) = g.f. A000129(n+1) (Pell numbers without 0) and Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1) (Fibonacci numbers without 0).
%F A054447 a(n) = Sum_(k*Sum_(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n), n>0. - _Vladimir Kruchinin_, Sep 06 2010
%F A054447 a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=9, a(3)=26. - _Philippe Deléham_, Jan 22 2014
%F A054447 G.f.: (1-x-x^2)/(1-2*x-x^2)^2 = g(f(x))/x, where g is g.f. of A001477 and f is g.f. of A000045. - _Oboifeng Dira_, Jun 21 2020
%t A054447 LinearRecurrence[{4, -2, -4, -1}, {1, 3, 9, 26}, 30] (* _Michael De Vlieger_, Jun 23 2020 *)
%o A054447 (Maxima) a(n):=sum(k*sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n); /* _Vladimir Kruchinin_, Sep 06 2010 */
%Y A054447 Cf. A000129, A000045, A054446, A001477.
%K A054447 easy,nonn
%O A054447 0,2
%A A054447 _Wolfdieter Lang_, Apr 27 2000