cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054451 Third column of triangle A054450 (partial row sums of unsigned Chebyshev triangle A049310).

This page as a plain text file.
%I A054451 #27 Jul 02 2025 16:01:59
%S A054451 1,1,4,5,12,17,33,50,88,138,232,370,609,979,1596,2575,4180,6755,10945,
%T A054451 17700,28656,46356,75024,121380,196417,317797,514228,832025,1346268,
%U A054451 2178293,3524577,5702870,9227464,14930334,24157816,39088150,63245985,102334135
%N A054451 Third column of triangle A054450 (partial row sums of unsigned Chebyshev triangle A049310).
%C A054451 Equals triangle A173284 * [1, 2, 3, ...]. - _Gary W. Adamson_, Mar 03 2010
%H A054451 Colin Barker, <a href="/A054451/b054451.txt">Table of n, a(n) for n = 0..1000</a>
%H A054451 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-3,1,1).
%F A054451 a(n) = A054450(n+2, 2).
%F A054451 G.f.: Fib(x)/(1-x^2)^2, with Fib(x)=1/(1-x-x^2) = g.f. A000045 (Fibonacci numbers without 0).
%F A054451 a(2*k) = A027941(k)= F(2*k+3)-1; a(2*k+1)= F(2*(k+2))-(k+2)= A054452(k), k >= 0.
%F A054451 a(n-2) = Fibonacci(n+1) - binomial(n-floor(n/2), floor(n/2)), or a(n-2) = Sum_{i=0..floor(n/2)-1} binomial(n-i, i). - _Jon Perry_, Mar 18 2004
%F A054451 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, k). - _Paul Barry_, Oct 23 2004
%p A054451 BB:=1/(1-k^2)^2/(1-k-k^2): seq(coeff(series(BB, k, n+1), k, n), n=0..50); # _Zerinvary Lajos_, May 16 2007
%t A054451 LinearRecurrence[{1,3,-2,-3,1,1},{1,1,4,5,12,17},40] (* _Harvey P. Dale_, Oct 06 2024 *)
%o A054451 (PARI) Vec(-1/((x-1)^2*(x+1)^2*(x^2+x-1)) + O(x^100)) \\ _Colin Barker_, Jun 14 2015
%Y A054451 Cf. A054450, A049310, A000045, A052952.
%Y A054451 Cf. A007382.
%Y A054451 Cf. A173284.
%K A054451 easy,nonn
%O A054451 0,3
%A A054451 _Wolfdieter Lang_, Apr 27 2000
%E A054451 More terms from _James Sellers_, Apr 28 2000