This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054453 #13 Jul 09 2025 03:55:05 %S A054453 1,2,1,4,2,1,8,5,2,1,15,10,6,2,1,28,20,12,7,2,1,51,38,26,14,8,2,1,92, %T A054453 71,50,33,16,9,2,1,164,130,97,64,41,18,10,2,1,290,235,180,130,80,50, %U A054453 20,11,2,1,509,420,332,244,171,98,60,22,12,2,1 %N A054453 Triangle of partial row sums of triangle A054450(n,m), n >= m >= 0. %C A054453 In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is ((1-z^2)*(Fib(z))^2)/(1-x*z/(1-z^2)) Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0). %C A054453 This is the second member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310(n,m) by repeated application of the partial row sums procedure. %C A054453 The column sequences are A029907, A001629, A054454 for m=0..2. %H A054453 Gregg Musiker, Nick Ovenhouse, and Sylvester W. Zhang, <a href="https://www-users.cse.umn.edu/~swzhang/files/MOZ-FPSAC23.pdf">Double Dimers and Super Ptolemy Relations</a>, Séminaire Lotharingien de Combinatoire XX, Proc. 35th Conf. Formal Power, Series and Algebraic Combinatorics (Davis) 2023, Art. #YY. See p. 12. %F A054453 a(n, m)=sum(A054450(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n<m, (sequence of partial row sums in column m). %F A054453 Column m recursion: a(n, m)= sum(a(j-1, m)*|A049310(n-j, 0)|, j=m..n) + A054450(n, m), n >= m >= 0, a(n, m) := 0 if n<m. %F A054453 G.f. for column m: ((1-x^2)*(Fib(x))^2)*(x/(1-x^2))^m, m >= 0, with Fib(x) G.f. for A000045(n+1). %e A054453 {1}; {2,1}; {4,2,1}; {8,5,2,1};... %e A054453 Fourth row polynomial (n=3): p(3,x)= 8+5*x+2*x^2+x^3 %Y A054453 Cf. A049310, A054450, A000045, A029907, A001629. Row sums: A054455(n). %K A054453 easy,nonn,tabl %O A054453 0,2 %A A054453 _Wolfdieter Lang_, Apr 27 2000 and May 08 2000