This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054454 #35 Nov 14 2024 23:52:06 %S A054454 1,2,6,12,26,50,97,180,332,600,1076,1908,3361,5878,10226,17700,30510, %T A054454 52390,89665,153000,260376,442032,748776,1265832,2136001,3598250, %U A054454 6052062,10164540,17048642 %N A054454 Third column of triangle A054453. %H A054454 G. C. Greubel, <a href="/A054454/b054454.txt">Table of n, a(n) for n = 0..1000</a> %H A054454 Charles H. Conley and Valentin Ovsienko, <a href="https://arxiv.org/abs/2209.10426">Shadows of rationals and irrationals: supersymmetric continued fractions and the super modular group</a>, arXiv:2209.10426 [math-ph], 2022. %H A054454 Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, <a href="https://arxiv.org/abs/2403.15053">On certain Fibonacci representations</a>, arXiv:2403.15053 [math.NT], 2024. See p. 8. %H A054454 Gregg Musiker, Nick Ovenhouse, and Sylvester W. Zhang, <a href="https://www-users.cse.umn.edu/~swzhang/files/MOZ-FPSAC23.pdf">Double Dimers and Super Ptolemy Relations</a>, Séminaire Lotharingien de Combinatoire XX, Proc. 35th Conf. Formal Power, Series and Algebraic Combinatorics (Davis) 2023, Art. #YY. See p. 12. %H A054454 László Németh, <a href="https://arxiv.org/abs/2403.12159">Walks on tiled boards</a>, arXiv:2403.12159 [math.CO], 2024. See p. 3. %H A054454 Tamás Szakács, <a href="https://hdl.handle.net/2437/381856">Linear recursive sequences and factorials</a>, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 23. %H A054454 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-4,-2,2,1). %F A054454 a(n) = A054453(n+2, 2). %F A054454 a(2*k) = 1 + (8*n*Fibonacci(2*n+1) + 3*(2*n+1)*Fibonacci(2*n))/5. %F A054454 a(2*k+1) = 2*(2*(2*n+1)*Fibonacci(2*(n+1)) + 3*(n+1)*Fibonacci(2*n+1))/5. %F A054454 G.f.: ((Fib(x))^2)/(1-x^2), with Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1)(Fibonacci numbers without F(0)). %F A054454 a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) where a(0)=1, a(1)=2, a(2)=6, a(3)=12, a(4)=26, a(5)=50. - _Harvey P. Dale_, May 06 2012 %t A054454 CoefficientList[Series[(1/(1-x-x^2))^2/(1-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-4,-2,2,1},{1,2,6,12,26,50},30] (* _Harvey P. Dale_, May 06 2012 *) %o A054454 (PARI) my(x='x+O('x^30)); Vec(1/((1-x^2)*(1-x-x^2)^2)) \\ _G. C. Greubel_, Jan 31 2019 %o A054454 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x^2)*(1-x-x^2)^2) )); // _G. C. Greubel_, Jan 31 2019 %o A054454 (Sage) (1/((1-x^2)*(1-x-x^2)^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 31 2019 %o A054454 (GAP) a:=[1,2,6,12,26,50];; for n in [7..30] do a[n]:=2*a[n-1]+2*a[n-2] -4*a[n-3]-2*a[n-4]+2*a[n-5]+a[n-6]; od; a; # _G. C. Greubel_, Jan 31 2019 %Y A054454 Cf. A054453, A000045. %K A054454 easy,nonn %O A054454 0,2 %A A054454 _Wolfdieter Lang_, Apr 27 2000