This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054455 #11 Sep 08 2022 08:45:01 %S A054455 1,3,7,16,34,70,140,274,527,999,1871,3468,6371,11613,21023,37826, %T A054455 67688,120530,213670,377252,663607,1163361,2033101,3542808,6157045, %U A054455 10673703,18460759,31859716,54872158,94326622 %N A054455 Row sums of triangle A054453. %H A054455 G. C. Greubel, <a href="/A054455/b054455.txt">Table of n, a(n) for n = 0..1000</a> %H A054455 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1). %F A054455 a(n) = Sum_{m=0..n} A054453(n, m). %F A054455 a(n) = ((5*n^2 + 27*n + 50)*F(n+1) + 34*(n+1)*F(n))/50, F(n)= A000045(n) (Fibonacci numbers). %F A054455 G.f.: ((Fib(x))^3)*(1-x^2)^2, with Fib(x)=1/(1-x-x^2) g.f. for A000045(n+1) (Fibonacci numbers without F(0)). %t A054455 LinearRecurrence[{3,0,-5,0,3,1}, {1,3,7,16,34,70}, 40] (* or *) CoefficientList[Series[(1-x^2)^2/(1-x-x^2)^3, {x,0,40}],x] (* _G. C. Greubel_, Jan 31 2019 *) %o A054455 (PARI) my(x='x+O('x^30)); Vec((1-x^2)^2/(1-x-x^2)^3) \\ _G. C. Greubel_, Jan 31 2019 %o A054455 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x^2)^2/(1-x-x^2)^3 )); // _G. C. Greubel_, Jan 31 2019 %o A054455 (Sage) ((1-x^2)^2/(1-x-x^2)^3).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 31 2019 %o A054455 (GAP) a:=[1,3,7,16,34,70];; for n in [7..30] do a[n]:=3*a[n-1]-5*a[n-3] +3*a[n-5]+a[n-6]; od; a; # _G. C. Greubel_, Jan 31 2019 %Y A054455 Cf. A054453, A000045. %K A054455 easy,nonn %O A054455 0,2 %A A054455 _Wolfdieter Lang_, Apr 27 2000