A054458 Convolution triangle based on A001333(n), n >= 1.
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Examples
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3. Triangle begins : 1 3, 1 7, 6, 1 17, 23, 9, 1 41, 76, 48, 12, 1 99, 233, 204, 82, 15, 1 239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012 (0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins : 1 0, 1 0, 3, 1 0, 7, 6, 1 0, 17, 23, 9, 1 0, 41, 76, 48, 12, 1 0, 99, 233, 204, 82, 15, 1 0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
Links
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Formula
a(n, m) := ((n-m+1)*a(n, m-1) + (2n-m)*a(n-1, m-1) + (n-1)*a(n-2, m-1))/(4*m), n >= m >= 1; a(n, 0)= A001333(n+1); a(n, m) := 0 if n
G.f. for column m: LPell(x)*(x*LPell(x))^m, m >= 0, with LPell(x)= (1+x)/(1-2*x-x^2) = g.f. for A001333(n+1).
G.f.: (1+x)/(1-2*x-y*x-x^2-y*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
Comments