A054458 Convolution triangle based on A001333(n), n >= 1.
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Examples
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3. Triangle begins : 1 3, 1 7, 6, 1 17, 23, 9, 1 41, 76, 48, 12, 1 99, 233, 204, 82, 15, 1 239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012 (0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins : 1 0, 1 0, 3, 1 0, 7, 6, 1 0, 17, 23, 9, 1 0, 41, 76, 48, 12, 1 0, 99, 233, 204, 82, 15, 1 0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
Links
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Formula
a(n, m) := ((n-m+1)*a(n, m-1) + (2n-m)*a(n-1, m-1) + (n-1)*a(n-2, m-1))/(4*m), n >= m >= 1; a(n, 0)= A001333(n+1); a(n, m) := 0 if n
G.f. for column m: LPell(x)*(x*LPell(x))^m, m >= 0, with LPell(x)= (1+x)/(1-2*x-x^2) = g.f. for A001333(n+1).
G.f.: (1+x)/(1-2*x-y*x-x^2-y*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
A062133 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A001333(n+1), n >= 0 (associated Pell numbers).
0, 1, 2, 20, 36, 16, 456, 944, 672, 160, 14304, 33760, 28800, 10880, 1536, 575040, 1466752, 1413120, 666880, 157440, 14848, 27659520, 74774784, 79278080, 43330560, 13153280, 2128896, 143360, 1548126720
Offset: 0
Comments
Examples
Triangle begins: {0}; {1,2}; {20,36,16}; {456,944,672,160}; ... pPL1(2,n) = 4*(5+9*n+4*n^2) = 4*(1+n)*(5+4*n). pPL2(2,n) = 8*(1+3*n+2*n^2) = 8*(1+n)*(1+2*n). PL(2; n) = A054460(n) = (1+n)*((5+4*n)*PL(n+1)+(1+2*n)*PL(n))/16.
Comments