cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054474 Number of walks on square lattice that start and end at origin after 2n steps, not touching origin at intermediate stages.

This page as a plain text file.
%I A054474 #89 Nov 11 2024 10:25:45
%S A054474 1,4,20,176,1876,22064,275568,3584064,47995476,657037232,9150655216,
%T A054474 129214858304,1845409805168,26606114089024,386679996988736,
%U A054474 5658611409163008,83302885723872852,1232764004638179504,18327520881735288432,273595871825723062848
%N A054474 Number of walks on square lattice that start and end at origin after 2n steps, not touching origin at intermediate stages.
%C A054474 1-dimensional and 3-dimensional analogs are A002420 and A049037.
%C A054474 Trajectories returning to the origin are prohibited, contrary to the situation in A094061.
%C A054474 The probability of returning to the origin for the first time after 2n steps is given by a(n)/4^(2*n). If A(x) is a generating function for this sequence, A(x/16) is a generating function for the sequence of probabilities. The sum of these probabilities for n > 0 is 1 unlike in dimensions > 2. - _Shel Kaphan_, Feb 13 2023
%D A054474 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
%H A054474 Alois P. Heinz, <a href="/A054474/b054474.txt">Table of n, a(n) for n = 0..834</a>
%H A054474 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/polya/flajolet.html">Symmetric Random Walk on n-Dimensional Integer Lattice</a> [Broken link]
%H A054474 Steven R. Finch, <a href="/A054474/a054474.txt">Symmetric Random Walk on n-Dimensional Integer Lattice</a> [Cached copy, with permission of the author]
%H A054474 Markus Kuba and Alois Panholzer, <a href="https://arxiv.org/abs/2411.03930">Lattice paths and the diagonal of the cube</a>, arXiv:2411.03930 [math.CO], 2024. See p. 14.
%F A054474 G.f.: 2 - AGM(1, (1-16*x)^(1/2)).
%F A054474 G.f.: 2 - 1/hypergeom([1/2,1/2],[1],16*x). - _Joerg Arndt_, Jun 16 2011
%F A054474 Let (in Maple notation) G(x):=4/Pi*EllipticK(4*t)-2/Pi*EllipticF(1/sqrt(2+4*t), 4*t)-2/Pi*EllipticF(1/sqrt(2-4*t), 4*t), then GenFunc(x):=2-1/G(x). - _Sergey Perepechko_, Sep 11 2004
%F A054474 G.f.: 2 - Pi/(2*EllipticK(4*sqrt(x))). - _Vladeta Jovovic_, Jun 23 2005
%F A054474 a(n) ~ Pi * 16^n / (n * log(n)^2) * (1 - (2*gamma + 8*log(2)) / log(n) + (3*gamma^2 + 24*log(2)*gamma + 48*log(2)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 29 2019
%F A054474 INVERTi transform of A002894. - _R. J. Mathar_, Sep 24 2020
%e A054474 a(5)=22064, i.e., there are 22064 different walks (on a square lattice) that start and end at the origin after 2*5=10 steps, avoiding the origin at intermediate steps.
%p A054474 b:= proc(n) b(n):= binomial(2*n, n)^2 end:
%p A054474 a:= proc(n) option remember;
%p A054474       b(n)-add(a(n-i)*b(i), i=1..n-1)
%p A054474     end:
%p A054474 seq(a(n), n=0..21);  # _Alois P. Heinz_, Dec 05 2023
%t A054474 m = 18; gf[x_] = 2 - Pi/(2*EllipticK[4*Sqrt[x]]); (List @@ Normal[ Series[ gf[x], {x, 0, m-1}]] /. x -> 1)[[1 ;; m+1]]*Table[4^k, {k, 0, m}] (* _Jean-François Alcover_, Jun 16 2011, after _Vladeta Jovovic_ *)
%t A054474 CoefficientList[Series[2-Pi/(2*EllipticK[16*x]),{x,0,20}],x] (* _Vaclav Kotesovec_, Mar 10 2014 *)
%t A054474 CoefficientList[Series[2-ArithmeticGeometricMean[1,Sqrt[1-16x]],{x,0,20}],x] (* _Thomas Dybdahl Ahle_, Oct 30 2023 *)
%o A054474 (PARI) a(n)=if(n<0,0,polcoeff(2-agm(1,sqrt(1-16*x+x*O(x^n))),n))
%Y A054474 Cf. A002894, A002420, A049037, A063887.
%Y A054474 Column k=2 of A361397.
%K A054474 easy,nonn,walk
%O A054474 0,2
%A A054474 Alessandro Zinani (alzinani(AT)tin.it), May 19 2000