This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054477 #40 Jan 05 2025 19:51:36 %S A054477 1,13,64,307,1471,7048,33769,161797,775216,3714283,17796199,85266712, %T A054477 408537361,1957420093,9378563104,44935395427,215298414031, %U A054477 1031556674728,4942484959609,23680868123317,113461855656976,543628410161563,2604680195150839,12479772565592632 %N A054477 A Pellian-related sequence. %D A054477 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 256. %H A054477 Reinhard Zumkeller, <a href="/A054477/b054477.txt">Table of n, a(n) for n = 0..1000</a> %H A054477 A. F. Horadam, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/9-3/horadam-a.pdf">Pell Identities</a>, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252. %H A054477 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A054477 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1) %F A054477 a(n) = 5a(n-1)-a(n-2); a(0)=1, a(1)=13. %F A054477 (A054477)=sqrt{21*(A002320)^2-20}; where the algebraic operations on (A------) are performed from the inside - out; that is, first squared, then multiplied by 21, then 20 is subtracted and finally the square root is performed term by term. %F A054477 G.f.: (1+8*x)/(1-5*x+x^2). - _Alois P. Heinz_, Aug 07 2008 %F A054477 a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-21+sqrt(21))+(5+sqrt(21))^n*(21+sqrt(21))))/sqrt(21). - _Colin Barker_, May 26 2016 %F A054477 E.g.f.: (sqrt(21)*sinh(sqrt(21)*x/2) + cosh(sqrt(21)*x/2))*exp(5*x/2). - _Ilya Gutkovskiy_, May 26 2016 %p A054477 a:= n-> (Matrix([[1,-8]]). Matrix([[5,1],[ -1,0]])^(n))[1,1]: %p A054477 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 07 2008 %t A054477 LinearRecurrence[{5, -1}, {1, 13}, 20] (* _Jean-François Alcover_, Jan 09 2016 *) %o A054477 (Haskell) %o A054477 a054477 n = a054477_list !! n %o A054477 a054477_list = 1 : 13 : %o A054477 (zipWith (-) (map (* 5) (tail a054477_list)) a054477_list) %o A054477 -- _Reinhard Zumkeller_, Oct 16 2011 %Y A054477 Cf. A002320. %K A054477 easy,nonn %O A054477 0,2 %A A054477 _Barry E. Williams_, Apr 16 2000