This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054489 #38 Jul 02 2025 16:01:59 %S A054489 1,10,59,344,2005,11686,68111,396980,2313769,13485634,78600035, %T A054489 458114576,2670087421,15562409950,90704372279,528663823724, %U A054489 3081278570065,17959007596666,104672767009931,610077594462920 %N A054489 Expansion of (1+4*x)/(1-6*x+x^2). %C A054489 Numbers n such that 8*n^2 + 41 is a square. %C A054489 (x, y) = (a(n), a(n+1)) are solutions to x^2 + y^2 - 6*x*y = 41. - _John O. Oladokun_, Mar 17 2021 %D A054489 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196. %H A054489 G. C. Greubel, <a href="/A054489/b054489.txt">Table of n, a(n) for n = 0..1000</a> %H A054489 I. Adler, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), pp. 181-193. %H A054489 E. I. Emerson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242. %H A054489 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A054489 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1). %F A054489 a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=10. %F A054489 a(n) = (10*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)). %F A054489 From _G. C. Greubel_, Jan 19 2020: (Start) %F A054489 a(n) = ChebyshevU(n,3) + 4*ChebyshevU(n-1,3). %F A054489 a(n) = (Pell(2*n+2) + 4*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + 3*Pell(2*n))/2. %F A054489 E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 7*sinh(2*sqrt(2)*x)/(2*sqrt(2)) ). (End) %p A054489 a[0]:=1: a[1]:=10: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # _Zerinvary Lajos_, Jul 26 2006 %t A054489 Table[(LucasL[2*n+1, 2] + 3*Fibonacci[2*n, 2])/2, {n,0,30}] (* _G. C. Greubel_, Jan 19 2020 *) %t A054489 LinearRecurrence[{6,-1},{1,10},20] (* _Harvey P. Dale_, Jun 11 2024 *) %o A054489 (PARI) vector(31, n, polchebyshev(n-1,2,3) +4*polchebyshev(n-2,2,3) ) \\ _G. C. Greubel_, Jan 19 2020 %o A054489 (Magma) I:=[1,10]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 19 2020 %o A054489 (Sage) [chebyshev_U(n,3) +4*chebyshev_U(n-1,3) for n in (0..30)] # _G. C. Greubel_, Jan 19 2020 %o A054489 (GAP) a:=[1,10];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 19 2020 %Y A054489 Cf. A000129, A002203, A038761, A054488. %K A054489 easy,nonn %O A054489 0,2 %A A054489 _Barry E. Williams_, May 04 2000 %E A054489 More terms from _James Sellers_, May 05 2000