A054495 Smallest k such that n/k is a Fibonacci number.
1, 1, 1, 2, 1, 2, 7, 1, 3, 2, 11, 4, 1, 7, 3, 2, 17, 6, 19, 4, 1, 11, 23, 3, 5, 2, 9, 14, 29, 6, 31, 4, 11, 1, 7, 12, 37, 19, 3, 5, 41, 2, 43, 22, 9, 23, 47, 6, 49, 10, 17, 4, 53, 18, 1, 7, 19, 29, 59, 12, 61, 31, 3, 8, 5, 22, 67, 2, 23, 14, 71, 9, 73, 37, 15, 38, 77, 6, 79, 10, 27, 41
Offset: 1
Examples
a(10)=2 because 10/1=10 is not a Fibonacci number but 10/2=5 is.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A010056(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) a(n)=fordiv(n,d,if(A010056(n/d), return(d))) \\ Charles R Greathouse IV, Nov 05 2014
-
Python
from sympy import divisors from sympy.ntheory.primetest import is_square def A054495(n): return next(d for d in divisors(n) if is_square(m:=5*(n//d)**2-4) or is_square(m+8)) # Chai Wah Wu, May 06 2024
Formula
a(n) = n/A054494(n). [Corrected by Charles R Greathouse IV, Nov 05 2014]
Extensions
a(34), a(55), a(68) corrected by Charles R Greathouse IV, Nov 06 2014